
RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Wall details

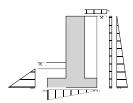
Retaining wall type; Height of retaining wall stem; Thickness of wall stem; Length of toe; Length of heel; Overall length of base; Thickness of base; Depth of downstand; Position of downstand: Thickness of downstand; Height of retaining wall; Depth of cover in front of wall; Depth of unplanned excavation; Height of ground water behind wall; Height of saturated fill above base; Density of wall construction; Density of base construction; Angle of rear face of wall; Angle of soil surface behind wall; Effective height at virtual back of wall;

Unpropped cantilever h_{stem} = **2000** mm $t_{wall} = 600 \text{ mm}$ I_{toe} = 600 mm I_{heel} = **400** mm $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 1600 \text{ mm}$ t_{base} = **300** mm $d_{ds} = 0 \text{ mm}$ $I_{ds} = 600 \text{ mm}$ t_{ds} = **300** mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 2300 \text{ mm}$ $d_{cover} = 500 \text{ mm}$ d_{exc} = **200** mm $h_{water} = 0 mm$ $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 0 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ $\gamma_{base} = 23.6 \text{ kN/m}^3$ $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \text{ deg}$ $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 2300 \text{ mm}$

Retained material details

Mobilisation factor;	M = 1.5
Moist density of retained material;	$\gamma_{m} = 18.0 \text{ kN/m}^{3}$
Saturated density of retained material;	$\gamma_{s} = 21.0 \text{ kN/m}^{3}$
Design shear strength;	$\phi' = 24.2 \text{ deg}$
Angle of wall friction;	$\boldsymbol{\delta} = \boldsymbol{0.0} \text{ deg}$
Base material details	
Dase material details	
Moist density;	γ _{mb} = 18.0 kN/m ³
	γ_{mb} = 18.0 kN/m ³ ϕ'_{b} = 24.2 deg
Moist density;	•

Using Coulomb theory


Active pressure coefficient for retained material

 $K_{a} = sin(\alpha + \phi')^{2} / (sin(\alpha)^{2} \times sin(\alpha - \delta) \times [1 + \sqrt{(sin(\phi' + \delta) \times sin(\phi' - \beta) / (sin(\alpha - \delta) \times sin(\alpha + \beta)))}]^{2}) = 0.419$ Passive pressure coefficient for base material

 $K_{p} = \sin(90 - \phi'_{b})^{2} / (\sin(90 - \delta_{b}) \times [1 - \sqrt{(\sin(\phi'_{b} + \delta_{b}) \times \sin(\phi'_{b}) / (\sin(90 + \delta_{b})))}]^{2}) = 4.187$

At-rest pressure

At-rest pressure for retained material;	$K_0 = 1 - sin(\phi') = 0.590$
Loading details	
Surcharge load on plan;	Surcharge = 10.0 kN/m ²
Applied vertical dead load on wall;	$W_{dead} = 0.0 \text{ kN/m}$
Applied vertical live load on wall;	W _{live} = 0.0 kN/m
Position of applied vertical load on wall;	$I_{load} = 0 mm$
Applied horizontal dead load on wall;	F _{dead} = 0.0 kN/m
Applied horizontal live load on wall;	F _{live} = 0.0 kN/m
Height of applied horizontal load on wall;	$h_{load} = 0 mm$

Loads shown in kN/m, pressures shown in kN/m²

Vertical forces on wall

Wall stem; Wall base; Surcharge; Moist backfill to top of wall; Soil in front of wall; Total vertical load;

Horizontal forces on wall

Surcharge; Moist backfill above water table; Total horizontal load;

Calculate stability against sliding

Passive resistance of soil in front of wall; 12.9 kN/m Resistance to sliding;

Overturning moments

Surcharge; Moist backfill above water table; Total overturning moment;

Restoring moments

Wall stem; Wall base;
$$\begin{split} w_{wall} &= h_{stem} \times t_{wall} \times \gamma_{wall} = 28.3 \text{ kN/m} \\ w_{base} &= I_{base} \times t_{base} \times \gamma_{base} = 11.3 \text{ kN/m} \\ w_{sur} &= \text{Surcharge} \times I_{heel} = 4 \text{ kN/m} \\ w_{m_w} &= I_{heel} \times (h_{stem} - h_{sat}) \times \gamma_m = 14.4 \text{ kN/m} \\ w_p &= I_{toe} \times d_{cover} \times \gamma_{mb} = 5.4 \text{ kN/m} \\ W_{total} &= w_{wall} + w_{base} + w_{sur} + w_{m_w} + w_p = 63.4 \text{ kN/m} \end{split}$$

$$\begin{split} F_{sur} &= K_a \times Surcharge \times h_{eff} = \textbf{9.6 kN/m} \\ F_{m_a} &= 0.5 \times K_a \times \gamma_m \times (h_{eff} - h_{water})^2 = \textbf{19.9 kN/m} \\ F_{total} &= F_{sur} + F_{m_a} = \textbf{29.6 kN/m} \end{split}$$

 $F_{p} = 0.5 \times K_{p} \times cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} =$

$$\label{eq:Fres} \begin{split} F_{res} = F_p + (W_{total} - w_{sur} - w_p) \times tan(\delta_b) = \textbf{31.0 kN/m} \\ \textbf{PASS - Resistance force is greater than sliding force} \end{split}$$

$$\begin{split} M_{sur} &= F_{sur} \times \left(h_{eff} - 2 \times d_{ds}\right) / 2 = \textbf{11.1 kNm/m} \\ M_{m_a} &= F_{m_a} \times \left(h_{eff} + 2 \times h_{water} - 3 \times d_{ds}\right) / 3 = \textbf{15.3 kNm/m} \\ M_{ot} &= M_{sur} + M_{m_a} = \textbf{26.3 kNm/m} \end{split}$$

$$\begin{split} M_{wall} &= w_{wall} \times (I_{toe} + t_{wall} \ / \ 2) = \textbf{25.5} \ kNm/m \\ M_{base} &= w_{base} \times I_{base} \ / \ 2 = \textbf{9.1} \ kNm/m \end{split}$$

Moist backfill;	$M_{m_r} = (w_{m_w} \times (I_{base} - I_{heel} / 2) + w_{m_s} \times (I_{base} - I_{heel} / 3)) =$
20.2 kNm/m Total restoring moment;	$M_{rest} = M_{wall} + M_{base} + M_{m_r} = 54.7 \text{ kNm/m}$
Check stability against overturning	
Total overturning moment;	M _{ot} = 26.3 kNm/m
Total restoring moment;	M _{rest} = 54.7 kNm/m
PAS	S - Restoring moment is greater than overturning moment
Check bearing pressure	
Surcharge;	$M_{sur_r} = w_{sur} \times (I_{base} - I_{heel} / 2) = 5.6 \text{ kNm/m}$
Soil in front of wall;	$M_{p_r} = w_p \times I_{toe} / 2 = 1.6 \text{ kNm/m}$
Total moment for bearing;	$M_{total} = M_{rest} - M_{ot} + M_{sur_r} + M_{p_r} = 35.6 \text{ kNm/m}$
Total vertical reaction;	R = W _{total} = 63.4 kN/m
Distance to reaction;	$x_{bar} = M_{total} / R = 561 mm$
Eccentricity of reaction;	e = abs((I _{base} / 2) - x _{bar}) = 239 mm
	Reaction acts within middle third of base
Bearing pressure at toe;	$p_{toe} = (R / I_{base}) + (6 \times R \times e / I_{base}^{2}) = 75.2 \text{ kN/m}^{2}$
Bearing pressure at heel;	$p_{heel} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 4.1 \text{ kN/m}^2$
PASS - Maximun	n bearing pressure is less than allowable bearing pressure

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor;	$\gamma_{f_d} = \gamma_{f_d}$
Live load factor;	$\gamma_{f_l} = 1$
Earth and water pressure factor;	$\gamma_{f_e} = \gamma_{f_e}$

Factored vertical forces on wall

Wall stem; $w_{wall_f} = \gamma_{f_d} \times h_{stem} \times t_{wal}$	u×γ _{wall} = 39.6 k
Wall base; $w_{base_{f}} = \gamma_{f_{d}} \times I_{base} \times t_{bas}$	
Surcharge; $w_{sur_f} = \gamma_{f_i} \times Surcharge$	\times I _{heel} = 6.4 kN
Moist backfill to top of wall; $w_{m_w_f} = \gamma_{f_d} \times I_{heel} \times (h_{stee})$	_{em} - h _{sat}) ×γ _m =
Soil in front of wall; $w_{p_{-}f} = \gamma_{f_{-}d} \times I_{toe} \times d_{cover} \times \gamma_{f_{-}d}$	$\gamma_{\rm mb}$ = 7.6 kN/n
Total vertical load; $W_{total_f} = w_{wall_f} + w_{base_}$	$_{f}$ + W _{sur_f} + W _m

Factored horizontal at-rest forces on wall

Surcharge: Moist backfill above water table; Total horizontal load: Passive resistance of soil in front of wall; $(d_{exc})^2 \times \gamma_{mb} = 18 \text{ kN/m}$

Factored overturning moments

Surcharge: Moist backfill above water table; Total overturning moment;

Restoring moments

Wall stem; Wall base; Surcharge; Moist backfill: 28.2 kNm/m Soil in front of wall; Total restoring moment; kNm/m

Factored bearing pressure

Total moment for bearing; Total vertical reaction; Distance to reaction; Eccentricity of reaction;

Bearing pressure at toe; Bearing pressure at heel; Rate of change of base reaction; Bearing pressure at stem / toe; Bearing pressure at mid stem; 29.1 kN/m²

1.4 1.6 1.4

> kN/m 9 kN/m N/m = 20.2 kN/m m _{m w f} + w_{p f} = **89.6** kN/m

 $F_{sur f} = \gamma_{f} \times K_0 \times Surcharge \times h_{eff} = 21.7 \text{ kN/m}$ $F_{m a f} = \gamma_{f e} \times 0.5 \times K_0 \times \gamma_m \times (h_{eff} - h_{water})^2 = 39.3 \text{ kN/m}$ $F_{total f} = F_{sur f} + F_{m a f} = 61 \text{ kN/m}$ $F_{p f} = \gamma_{f e} \times 0.5 \times K_{p} \times \cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{ds})$

 $M_{sur f} = F_{sur f} \times (h_{eff} - 2 \times d_{ds}) / 2 = 25 \text{ kNm/m}$ $M_{m_a_f} = F_{m_a_f} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 30.2 \text{ kNm/m}$ $M_{ot_f} = M_{sur_f} + M_{m_a_f} = 55.1 \text{ kNm/m}$

 $M_{wall_f} = w_{wall_f} \times (I_{toe} + t_{wall} / 2) = \textbf{35.7 kNm/m}$ $M_{\text{base f}} = w_{\text{base f}} \times I_{\text{base}} / 2 = 12.7 \text{ kNm/m}$ $M_{sur_r_f} = w_{sur_f} \times (I_{base} - I_{heel} / 2) = \textbf{9} \text{ kNm/m}$ $M_{m r f} = (W_{m w f} \times (I_{base} - I_{heel} / 2) + W_{m s f} \times (I_{base} - I_{heel} / 3)) =$

 $M_{p,r,f} = W_{p,f} \times I_{toe} / 2 = 2.3 \text{ kNm/m}$ $M_{rest_f} = M_{wall_f} + M_{base_f} + M_{sur_r_f} + M_{m_r_f} + M_{p_r_f} = 87.8$

 $M_{total f} = M_{rest f} - M_{ot f} = 32.7 \text{ kNm/m}$ $R_f = W_{total f} = 89.6 \text{ kN/m}$ $x_{\text{bar f}} = M_{\text{total f}} / R_{\text{f}} = 365 \text{ mm}$ $e_f = abs((I_{base} / 2) - x_{bar_f}) = 435 mm$ Reaction acts outside middle third of base $p_{toe_f} = R_f / (1.5 \times x_{bar_f}) = 163.8 \text{ kN/m}^2$ $p_{heel f} = 0 \text{ kN/m}^2 = 0 \text{ kN/m}^2$ rate = $p_{toe f} / (3 \times x_{bar f}) = 149.66 \text{ kN/m}^2/\text{m}$ $p_{stem toe f} = max(p_{toe f} - (rate \times I_{toe}), 0 \text{ kN/m}^2) = 74 \text{ kN/m}^2$ $p_{\text{stem mid f}} = \max(p_{\text{toe f}} - (\text{rate} \times (I_{\text{toe}} + t_{\text{wall}} / 2)), 0 \text{ kN/m}^2) =$

Bearing pressure at stem / heel; kN/m^2

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties	
Characteristic strength of concrete;	f _{cu} = 40 N/mm ²
Characteristic strength of reinforcement;	f _y = 500 N/mm ²
Base details	
Minimum area of reinforcement;	k = 0.13 %
Cover to reinforcement in toe;	c _{toe} = 30 mm
Calculate shear for toe design	
Shear from bearing pressure;	$V_{toe_bear} = (p_{toe_f} + p_{stem_toe_f}) \times I_{toe} / 2 = 71.3 \text{ kN/m}$
Shear from weight of base;	$V_{toe_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{toe} \times t_{base} = 5.9 \text{ kN/m}$
Shear from weight of soil;	$V_{toe_wt_soil} = w_{p_f} - (\gamma_{f_d} \times \gamma_m \times I_{toe} \times d_{exc}) = 4.5 \text{ kN/m}$
Total shear for toe design;	$V_{toe} = V_{toe_bear} - V_{toe_wt_base} - V_{toe_wt_soil} = 60.9 \text{ kN/m}$
Calculate moment for toe design	
Moment from bearing pressure;	$M_{toe_bear} = (2 \times p_{toe_f} + p_{stem_mid_f}) \times (I_{toe} + t_{wall} / 2)^2 / 6 = 48.2$
kNm/m	
Moment from weight of base;	$M_{toe_wt_base} = (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{toe} + t_{wall} / 2)^2 / 2) = 4$
kNm/m	
Moment from weight of soil;	$M_{toe_wt_soil} = (w_{p_f} - (\gamma_{f_d} \times \gamma_m \times I_{toe} \times d_{exc})) \times (I_{toe} + t_{wall}) / 2 =$
2.7 kNm/m	
Total moment for toe design;	$M_{toe} = M_{toe_bear} - M_{toe_wt_base} - M_{toe_wt_soil} = \textbf{41.4 kNm/m}$

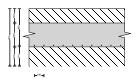
Check toe in bending

Width of toe; Depth of reinforcement; Constant;

Lever arm;

Area of tension reinforcement required; Minimum area of tension reinforcement; Area of tension reinforcement required;
$$\begin{split} b &= 1000 \text{ mm/m} \\ d_{toe} &= t_{base} - c_{toe} - (\phi_{toe} / 2) = 265.0 \text{ mm} \\ K_{toe} &= M_{toe} / (b \times d_{toe}^2 \times f_{cu}) = 0.015 \\ \hline \textit{Compression reinforcement is not required} \\ z_{toe} &= \min(0.5 + \sqrt{(0.25 - (\min(K_{toe}, 0.225) / 0.9)), 0.95) \times d_{toe}} \\ z_{toe} &= 252 \text{ mm} \\ A_{s_toe_des} &= M_{toe} / (0.87 \times f_y \times z_{toe}) = 378 \text{ mm}^2/\text{m} \\ A_{s_toe_min} &= k \times b \times t_{base} = 390 \text{ mm}^2/\text{m} \\ A_{s_toe_req} &= Max(A_{s_toe_des}, A_{s_toe_min}) = 390 \text{ mm}^2/\text{m} \end{split}$$

Reinforcement provided;	10 mm dia.bars @ 100 mm centres
Area of reinforcement provided;	$A_{s_toe_prov} = 785 \text{ mm}^2/\text{m}$
PASS - R	einforcement provided at the retaining wall toe is adequate
Check shear resistance at toe	
Design shear stress;	$v_{toe} = V_{toe} / (b \times d_{toe}) = 0.230 \text{ N/mm}^2$
Allowable shear stress;	$v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 N/mm^2)}, 5) \times 1 N/mm^2 = 5.000$
N/mm ²	
PAS	S - Design shear stress is less than maximum shear stress
From BS8110:Part 1:1997 – Table 3.8	
Design concrete shear stress;	v _{c_toe} = 0.546 N/mm ²
	<i>v_{toe}< v_{c_toe} - No shear reinforcement required</i>
Design of reinforced concrete retaining wall he	eel (BS 8002:1994)
Material properties	
Characteristic strength of concrete;	f _{cu} = 40 N/mm ²
Characteristic strength of reinforcement;	f _y = 500 N/mm ²
Base details	
Minimum area of reinforcement;	k = 0.13 %
Cover to reinforcement in heel;	c _{heel} = 30 mm
Calculate shear for heel design	
Shear from weight of base;	$V_{heel_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{heel} \times t_{base} = 4 \text{ kN/m}$
Shear from weight of moist backfill;	$V_{heel_wt_m} = w_{m_w_f} = 20.2 \text{ kN/m}$
Shear from surcharge;	$V_{heel_sur} = w_{sur_f} = 6.4 \text{ kN/m}$
Total shear for heel design;	$V_{heel} = V_{heel_wt_base} + V_{heel_wt_m} + V_{heel_sur} = 30.5 \text{ kN/m}$
Calculate moment for heel design	
Moment from weight of base;	$M_{heel_wt_base} = (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{heel} + t_{wall} / 2)^2 / 2) = 2.4$
kNm/m	
Moment from weight of moist backfill;	$M_{heel_wt_m} = w_{m_w_f} \times (I_{heel} + t_{wall}) / 2 = 10.1 \text{ kNm/m}$
Moment from surcharge;	$M_{heel_sur} = w_{sur_f} \times (I_{heel} + t_{wall}) / 2 = 3.2 \text{ kNm/m}$
Total moment for heel design;	$M_{heel} = M_{heel_wt_base} + M_{heel_wt_m} + M_{heel_sur} = 15.7 \text{ kNm/m}$



Check heel in bending Width of heel; Depth of reinforcement;

b = 1000 mm/m $d_{heel} = t_{base} - c_{heel} - (\phi_{heel} \ / \ 2) = 265.0 \ \text{mm}$

Constant;	$K_{heel} = M_{heel} / (b \times d_{heel}^2 \times f_{cu}) = 0.006$ Compression reinforcement is not required
Lever arm;	$z_{heel} = min(0.5 + \sqrt{(0.25 - (min(K_{heel}, 0.225) / 0.9)), 0.95)} \times$
d _{heel}	
	z _{heel} = 252 mm
Area of tension reinforcement required;	$A_{s_heel_des} = M_{heel} / (0.87 \times f_y \times z_{heel}) = 143 \text{ mm}^2/\text{m}$
Minimum area of tension reinforcement;	$A_{s_heel_min} = k \times b \times t_{base} = 390 \text{ mm}^2/\text{m}$
Area of tension reinforcement required;	A _{s_heel_req} = Max(A _{s_heel_des} , A _{s_heel_min}) = 390 mm ² /m
Reinforcement provided;	10 mm dia.bars @ 150 mm centres
Area of reinforcement provided;	A _{s_heel_prov} = 524 mm ² /m
PASS -	Reinforcement provided at the retaining wall heel is adequate
Check shear resistance at heel	
Design shear stress;	$v_{heel} = V_{heel} / (b \times d_{heel}) = 0.115 \text{ N/mm}^2$
Allowable shear stress;	$v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 N/mm^2)}, 5) \times 1 N/mm^2 = 5.000$
N/mm ²	
F	PASS - Design shear stress is less than maximum shear stress
From BS8110:Part 1:1997 – Table 3.8	
Design concrete shear stress;	v _{c_heel} = 0.477 N/mm ²
-	v _{heel} < v _{c_heel} - No shear reinforcement required

Design of cavity reinforced masonry retaining wall stem - BS5628-2:2000

Wall details

Thickness of outer leaf of wall; Thickness of inner leaf of wall; Thickness of reinforced cavity; Depth of stem reinforcement;

Masonry details

Masonry type;

 $\label{eq:touter} \begin{array}{l} t_{outer} = \textbf{150} \mbox{ mm} \\ t_{inner} = \textbf{200} \mbox{ mm} \\ t_{cavity} = t_{wall} \mbox{ - } t_{outer} \mbox{ - } t_{inner} = \textbf{250} \mbox{ mm} \\ d_{stem} = \textbf{390} \mbox{ mm} \end{array}$

Aggregate concrete blocks no voids

	Compressive strength of units;	p _{unit} = 10.0 N/mm ²
	Mortar designation;	(ii)
	Category of manufactoring control of units;	Category I
	Partial safety factor for material strength;	γ _{mm} = 2.0
	Characteristic compressive strength of masonr	у
	Least horizontal dimension of masonry units;	b _{unit} = 100.0 mm
	Height of masonry units;	h _{unit} = 215.0 mm
	Ratio of height to least horizontal dimension;	ratio = $h_{unit} / b_{unit} = 2.2$
Fro	om BS5628:2 Table 3d, mortar ii	
	Characteristic compressive strength;	f _k = 8.1 N/mm ²
	Factored horizontal at-rest forces on stem	
	Surcharge;	$\textbf{F}_{s_sur_f} = \gamma_{f_l} \times \textbf{K}_0 \times \textbf{Surcharge} \times (\textbf{h}_{eff} - \textbf{t}_{base} - \textbf{d}_{ds}) = \textbf{18.9 kN/m}$
	Moist backfill above water table;	$F_{s_m_a_f} = 0.5 \times \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat})^2 = 29.7$
	kN/m	
	Calculate shear for stem design	
	Shear at base of stem;	$V_{stem} = F_{s_sur_f} + F_{s_m_a_f} = 48.6 \text{ kN/m}$
	Calculate moment for stem design	
	Surcharge;	$M_{s_sur} = F_{s_sur_f} \times (h_{stem} + t_{base}) / 2 = 21.7 \text{ kNm/m}$
	Moist backfill above water table;	$M_{s_m_a} = F_{s_m_a_f} \times (2 \times h_{sat} + h_{eff} - d_{ds} + t_{base} / 2) / 3 = 24.3$
	kNm/m	
	Total moment for stem design;	$M_{stem} = M_{s_sur} + M_{s_m_a} = 46 \text{ kNm/m}$
	Check maximum design moment for wall stem	
	Width of wall;	b = 1000 mm/m
	Maximum design moment;	$M_{d_stem} = 0.4 \times f_k \times b \times d_{stem}^2 / \gamma_{mm} = 247.7 \text{ kNm/m}$ S - Applied moment is less than maximum design moment
		S - Applieu moment is less than maximum design moment
	Check wall stem in bending	$Q = M_{stem} / d_{stem}^2 = 0.302 \text{ N/mm}^2$
	Moment of resistance factor;	$Q = V_{\text{stem}} / d_{\text{stem}} = 0.302 \text{ N/IIIII}$ $Q = 2 \times c \times (1 - c) \times f_k / \gamma_{\text{mm}}$
	Lever arm factor;	c = 0.961
	Lever arm;	z _{stem} = min(0.95, c) × d _{stem} = 370.5 mm
	Area of tension reinforcement required;	$A_{s \text{ stem des}} = M_{\text{stem}} \times \gamma_{\text{ms}} / (f_{v} \times z_{\text{stem}}) = 286 \text{ mm}^2/\text{m}$
	Minimum area of tension reinforcement;	$A_{s_stem_min} = k \times b \times t_{wall} = 780 \text{ mm}^2/\text{m}$
	Area of tension reinforcement required;	A _{s_stem_req} = Max(A _{s_stem_des} , A _{s_stem_min}) = 780 mm ² /m
	Reinforcement provided;	12 mm dia.bars @ 100 mm centres
	Area of reinforcement provided;	$A_{s_stem_prov} = \pi \times \phi_{stem}^2 / (4 \times s_{stem}) = 1131 \text{ mm}^2/\text{m}$
	PASS - Reir	nforcement provided at the retaining wall stem is adequate
	Check shear resistance at wall stem	
	Design shear stress;	$v_{stem} = V_{stem} / (b \times d_{stem}) = 0.125 \text{ N/mm}^2$
	Basic characteristic shear strength of masonry; N/mm ²	$f_{vbas} = min[0.35 + (17.5 \times A_{s_stem_prov} / (b \times d_{stem})), 0.7] \times 1$
		f _{vbas} = 0.401 N/mm ²
	Shear span;	a = M _{stem} / V _{stem} = 946.1 mm
	Characteristic shear strength of masonry;	$f_v = Min(f_{vbas} \times max(2.5 - 0.25 \times (a \ / \ d_{stem}), 1), 1.75 \ N/mm^2)$

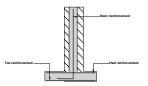
Allowable shear stress;

Check limiting dimensions

Limiting span/effective depth ratio; Actual span/effective depth ratio;

Axial load check

Factored axial load on wall; kN/m Limiting axial load;


$f_v = 0.759 \text{ N/mm}^2$ $v_{adm} = f_v / \gamma_{mv} = 0.379 \text{ N/mm}^2$ PASS - Design shear stress is less than maximum shear stress

ratio_{max} = **18.00** ratio_{act} = (h_{stem} + d_{stem} / 2) / d_{stem} = **5.63** *PASS - Span to depth ratio is acceptable*

 $N_{\text{wall}} = ([t_{\text{wall}} \times h_{\text{stem}} \times \gamma_{\text{wall}} + W_{\text{dead}}] \times \gamma_{f_{-d}}) + (W_{\text{live}} \times \gamma_{f_{-l}}) = 39.6$

$$\begin{split} N_{\text{limit}} &= 0.1 \times f_k \times t_{\text{wall}} = \textbf{488.5 kN/m} \\ \textbf{Applied axial load may be ignored - calculations valid} \end{split}$$

Indicative retaining wall reinforcement diagram

Toe bars - 10 mm dia.@ 100 mm centres - (785 mm²/m) Heel bars - 10 mm dia.@ 150 mm centres - (524 mm²/m) Stem bars - 12 mm dia.@ 100 mm centres - (1131 mm²/m)