

Noise Break-in Assessment

- Project No: PA302
- Report Ref: LH1304176NR
- Issue Date: 21st June 2017

69-71 High Street West, Glossop

Project Consultant

L. Hatton, BSc (Hons) AMIOA Acoustic Consultant info@acousticsurveys.co.uk

Proofing Consultant

T. Hegan, BSc (Hons) AMIOA Acoustic Consultant info@acousticsurveys.co.uk

Peak Acoustics Ltd Fernbank House Springwood Way Macclesfield SK10 2XA

PEAK acoustics

Contents

1. Summary
1.1. Proposal
1.2. Reason for Assessment
1.3. Planning Conditions & Criteria3
1.4. Assessment Standards & Justification
1.5. Measurements
1.6. Noise Assessment Outcome
1.7. Mitigation Recommendations4
2. Noise Break-in Assessment
2.1. Source Under Investigation
3. Survey Procedure
4. Assessment
4.1. Criteria
4.2. Results
4.3. Subjective Impressions
5. Mitigation
5.1. Glazing Enhancement7
5. Uncertainty7
APPENDIX A - Measurement Details
APPENDIX B - Equipment Details
APPENDIX C - Calibration Details
APPENDIX D – Results, Without Mitigation
APPENDIX E – Results, With Mitigation10
APPENDIX F – Test Data
APPENDIX G – Glazing Sound Insulation Data

1. Summary

1.1. Proposal

A development of residential dwellings is proposed at 69-71 High Street West, Glossop.

1.2. Reason for Assessment

The proposed dwellings are adjoined to an existing Public House. A sound insulation assessment is required in order to determine the level of noise break-in from the pub to the residential dwellings and provide mitigation in terms of sound insulation, if necessary. The local planning authority has raised concerns of internal noise levels within the first-floor level function room, in which live bands sometimes perform.

1.3. Planning Conditions & Criteria

For desirable internal noise levels to be maintained due to noise transfer from the public house, given in BS8233:2014 as:

• 30 dB L_{Aeq} in bedrooms (23:00 – 07:00)

For noise levels not to exceed NR25 within the residential dwellings during live performances within the function room of the public house.

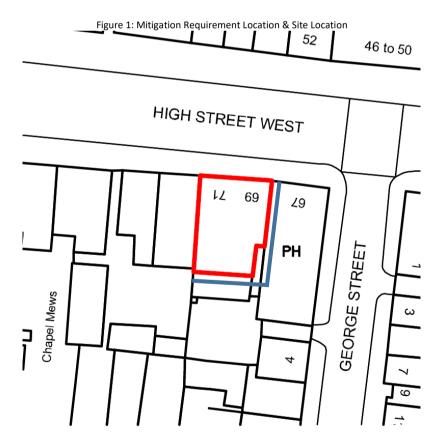
1.4. Assessment Standards & Justification

'BS8233:2014 – Guidance on sound insulation and noise reduction for buildings' is a recognised standard for assessing and mitigating environmental noise levels upon a proposed noise sensitive development.

'Noise Rating Curve – ISO 1973' give graphs of acceptable sound pressure levels plotted against frequency and are determined based on hearing preservation, speech and annoyance. Referencing noise break-in to NR curves allows for a more comprehensive assessment of internal noise levels due to the frequency dependency of the acceptable noise levels, as opposed to a single, broadband target.

1.5. Measurements

To assess noise transfer, the first-floor level function room of the public house was excited to >100dB L_{eq} . Ambient and residual noise measurements were taken within the proposed residential dwellings to determine the insertion loss between the function room and residential dwellings.


1.6. Noise Assessment Outcome

It was determined that the chief cause of noise transfer was from secondary transmission through glazed areas of the façade. Noise transfer through structural components, i.e. walls was noted as being minimal. The criteria is exceeded, therefore, mitigation has been specified.

1.7. Mitigation Recommendations

It is recommended that all living room and bedroom windows on the southern and eastern façade achieve a sound insulation value of \geq **39 dB** R_{W+Ctr} , which can be achieved through secondary glazing and/or specialist double glazing. The sound insulation value must consider both the glass and frame sound insulation. Example systems to achieve the required sound insulation are shown below:

- Secondary glazing: 6mm pane \rightarrow 150mm cavity \rightarrow 4mm pane.
- Double glazing: 10mm pane → 16mm argon filled cavity → 9.1mm Pilkington Optiphon[™] pane.

Glazing enhancement required

Site location

L. Hatton AMIOA Acoustic Consultant

2. Noise Break-in Assessment

2.1. Source Under Investigation

The primary source of noise break-in will arise from live bands performing within the FF level function roof associated with the adjacent pubic house, 'The Oakwood'. Noise levels of a live band performing within a small live music venue previously measured by Peak Acoustics as **98.6dB** $L_{Aeq,30mins}$ / **109.1dB** $L_{Zeq,30mins}$ have been utilised for the assessment of noise transfer.

3. Survey Procedure

- Measurements were obtained in 8s periods in 1/3 octave bands. Measurements were taken at various locations throughout the rooms.
- The function room was excited to 113.0dB L_{eq,8s}. 10 measurements were obtained and an arithmetic average was determined.
- 10x no. ambient measurements (source ON) and 5x no. residual measurements (source OFF) were obtained at the following locations on site:

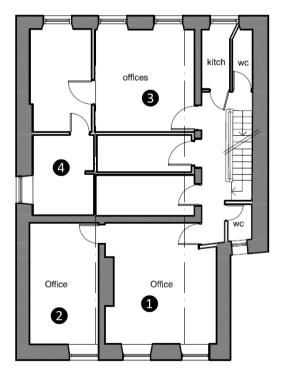
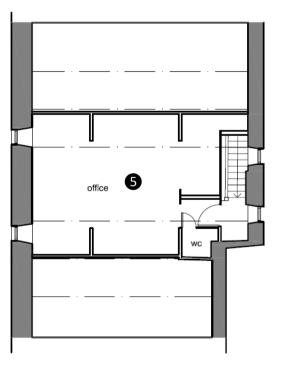



Figure 2: Measurement Areas

Second Floor Plan

Third Floor Plan

- The residual noise level is subtracted from the ambient noise level to negate extraneous noise sources, noted on site as passing road traffic.
- The difference between the source level and corrected residual noise level gives the insertion loss due to noise transfer from the function room to the proposed residential dwellings.
- The insertion loss is subtracted from the Live Band Measurement as referenced in section 2.1 to determine resultant noise-break.

Full calculations are shown in **Appendix E** and test data is shown in **Appendix F**. The measured insertion losses are tabulated below. Instances whereby the residual noise level was higher than the ambient noise level have been removed. These instances should be disregarded as the sound insulation provided between the function room and site is sufficient to mitigate noise emissions to below the current noise climate on site:

Location	63	125	250	500	1k	2k	4k	8k
1 , dB	47.5	52.4	58.3	64.3	67.7	-	-	-
2 , dB	-	53.5	57.8	-	61.3	-	-	-
3 , dB	38.6	-	63.8	61.0	63.8	-	-	-
🕘 , dB	-	-	-	-	-	-	-	-
5 , dB	53.7	61.7	67.9	67.1	66.3	71.2	72.1	40.1

Table 1: Insertion Loss Summary	/
---------------------------------	---

4. Assessment

4.1. Criteria

For desirable internal noise levels to be maintained due to noise transfer from the public house, given in BS8233:2014 as:

• 30 dB L_{Aeq} in bedrooms (23:00 – 07:00)

For noise levels to not exceed NR25 within the residential dwellings during live performances in the public house.

Results are shown in **Appendix D**. Instances whereby the assessment criteria are exceeded are highlighted in red.

4.2. Results

The criteria are exceeded; therefore, mitigation is necessary.

4.3. Subjective Impressions

It was identified by the technician on-site that the chief source of noise transfer was through the windows of both the function room and site. Minimal noise transfer was noted through structural components such as walls. It is noted that the proposed development does not directly share partition components with the function room supporting the subjective impression that structural noise transfer was minimal.

5. Mitigation

5.1. Glazing Enhancement

It is recommended that the existing 4mm single glazing of all living room and bedroom facades, as shown in figure 1, are uprated to \geq **39 dB R**_{w+ctr}. This can be achieved using systems such as those shown in section 1.7.

The improvement of uprating the existing 4mm single glazing utilising a secondary 6mm pane with 150mm cavity is shown below:

	63	125	250	500	1k	2k	4k	8k
4mm Single, dB R _w	10*	20	22	28	33	34	28	28*
6 / 150 / 4mm, dB R _w	14.5*	29	35	45	56	52	50	50*
Improvement, dB R _w	4.5*	9	13	17	23	18	22	22*

Table 2: Glazing Enhancement, 6 / 150 / 4mm

*63Hz sound insulation data is not given on the manufacturers specification sheet. It is assumed as half the sound insulation of the adjacent octave band. 8kHz sound insulation data is not given on the manufacturers specification sheet. It is assumed as equal to the sound insulation of the adjacent octave band.

Glazing sound insulation data is shown in **Appendix G**.

Applying the above improvement to the internal noise levels as shown in **Appendix E** demonstrates that the criteria will be met with the mitigation measures in place.

5. Uncertainty

- A representative internal live band noise source is assumed. Louder bands may perform within the function room. The noise data was obtained at a medium-sized, dedicated live music venue in a city centre and therefore the noise levels assumed in the report are deemed to be suitably stringent.
- Glazing sound insulation data did does not contain 63Hz and 8kHz sound insulation data. Reasonable assumptions have been made in order to give a more detailed assessment of frequency dependant insertion loss provided between the function room and proposed residential dwellings.
- The measurement is subject to a ±1dB error margin. Calibration was checked before and after measurements and demonstrated that the calibration drift was negligible throughout the measurement procedure.

٦

Г

	APPENDIX A - Measurement Details											
Measurements	Kit	Start Date	Start Time	End Date	End Time							
M1	B1	14/06/17	10:34	14/06/17	11:03							

	ŀ	APPENDIX B	- Equipment	Details	
Kit	Equipment	Make	Model	Class	Serial Number
B1	Sound Meter	Svantek	977	1	36815
B1	Pre-Amp	Svantek	SV12L	1	47589
B1	Calibrator	Svantek	SV33A	1	58014

	APPENDI)	K C - Calibra [.]	tion Details		
Measurements	Calibrator Ref Level	Level Before	Deviation Before	Level After	Deviation After
ivieasul efficitus	(dB)	(dB)	(dB)	(dB)	(dB)
M1	114.0	114.56	0.56	114.70	0.70

APPENDIX D – Results, Without Mitigation

	63	125	250	500	1k	2k	4k	8k	Sum	
A-Weighting	-26.2	-16.1	-8.6	-3.2	0	1.2	1	-1.1		
NR25	55	44	35	29	25	22	20	18		
Live Band, dB L _{eq,30min}	98.2	100.5	99.2	93.3	91.1	89.4	86.4	78.0	104.9	
1, L _{eq,30min}	50.7	48.1	40.9	29.0	23.4	-	-	-		
1, Difference, NR25	-4.3	4.1	5.9	0.0	-1.6	-	-	-		
1, dB L _{Aeq,30min}	24.5	32.0	32.3	25.8	23.4	-	-	-	36.2	
1, Difference, 30dB L _{Aeq}		•	•	•		•	-		6.2	
2, L _{eq,30min}	-	47.1	41.3	-	29.8	-	-	-		
2, Difference, NR25	-	3.1	6.3	-	4.8	-	-	-		
2, dB L _{Aeq,30min}	-	31.0	32.7	-	29.8	-	-	-	36.1	
2, Difference, 30dB L _{Aeq}	IB L _{Aeq}									
3, Internal Level, Leq,30min	59.7	-	35.3	32.2	27.3	-	-	-		
3, Difference, NR25	4.7	-	0.3	3.2	2.3	-	-	-		
3, Internal Level, L _{Aeq,30min}	33.5	-	26.7	29.0	27.3	-	-	-	36.1	
3, Difference, 30dB L _{Aeq}									6.1	
4, Internal Level, L _{eq,30min}	-	-	-	-	-	-	-	-		
4, Difference, NR25	-	-	-	-	-	-	-	-		
4, dB L _{Aeq,30min}	-	-	-	-	-	-	-	-		
Difference, 30dB L _{Aeq}		•	•	•			•		-	
5, Internal Level, dB L _{eq,30min}	44.5	38.8	31.2	26.2	24.8	18.2	14.2	37.9		
5, Difference, NR25	-10.5	-5.2	-3.8	-2.8	-0.2	-3.8	-5.8	19.9		
5, Internal Level, L _{Aeq,30min}	18.3	22.7	22.6	23.0	24.8	19.4	15.2	36.8	37.7	
5, Difference, 30dB L _{Aeq}			•				•		7.7	

L. Hatton AMIOA Acoustic Consultant

APPENDIX E – Results, With Mitigation

Note: Improvement in 1/1 oct. shown in section 5.1, table 2.

	63	125	250	500	1k	2k	4k	8k	Sum
A-Weighting	-26.2	-16.1	-8.6	-3.2	0	1.2	1	-1.1	
NR25	55	44	35	29	25	22	20	18	
Live Band, dB L _{eq,30min}	98.2	100.5	99.2	93.3	91.1	89.4	86.4	78.0	104.9
1, L _{eq,30min}	36.2	19.1	5.9	-16.0	-32.6	-	-	-	
1, Difference, NR25	-18.8	-24.9	-29.1	-45.0	-57.6	-	-	-	
1, dB L _{Aeq,30min}	10.0	3.0	-2.7	-19.2	-32.6	-	-	-	11.0
1, Difference, 30dB L _{Aeq}								,	-19.0
2, L _{eq,30min}	-	38.1	28.3	-	6.8	-	-	-	
2, Difference, NR25	-	-5.9	-6.7	-	-18.2	-	-	-	
2, dB L _{Aeq,30min}	-	22.0	19.7	-	6.8	-	-	-	24.1
2, Difference, 30dB L _{Aeq}									-5.9
3, Internal Level, L _{eq,30min}	55.2	-	22.3	15.2	4.3	-	-	-	
3, Difference, NR25	0.2	-	-12.7	-13.8	-20.7	-	-	-	
3, Internal Level, L _{Aeq,30min}	29.0	-	13.7	12.0	4.3	-	-	-	29.2
3, Difference, 30dB L _{Aeq}			•			,	. <u>.</u>	·	-0.8
4, Internal Level, L _{eq,30min}	-	-	-	-	-	-	-	-	
4, Difference, NR25	-	-	-	-	-	-	-	-	
4, dB L _{Aeq,30min}	-	-	-	-	-	-	-	-	
Difference, 30dB L _{Aeq}			•			•	•		-
5, Internal Level, dB L _{eq,30min}	40.0	29.8	18.2	9.2	1.8	0.2	-7.8	15.9	
5, Difference, NR25	-15.0	-14.2	-16.8	-19.8	-23.2	-21.8	-27.8	-2.1	
5, Internal Level, L _{Aeq,30min}	13.8	13.7	9.6	6.0	1.8	1.4	-6.8	14.8	19.7
5, Difference, 30dB L _{Aeq}			•						-10.3

L. Hatton AMIOA Acoustic Consultant

APPENDIX F – Test Data

	1/1 Oct	62	425	250	500	41.	21.	41.	01.	C	
	1/1 Oct.	63	125	250	500	1k	2k	4k	8k	Sum	
	Source	98.2	109.7	107.5	102.1	99.1	100.9	99.2	63.0	113.0	
0	Ambient	52.8	57.6	50.1	42.7	38.7	35.8	34.8	28.2	59.6	
U	Residual	48.6	46.3	43.0	41.0	37.8	36.7	34.9	31.5	52.1	
	Corrected	50.7	57.3	49.2	37.8	31.4	-	-	-	-	
	Insertion Loss	47.5	52.4	58.3	64.3	67.7	-	-	-	-	
	1/1 Oct.	63	125	250	500	1k	2k	4k	8k	Sum	
	Source	98.2	109.7	107.5	102.1	99.1	100.9	99.2	63.0	113.0	
2	Ambient	48.2	56.7	50.5	40.4	40.8	34.0	31.9	27.3	58.3	
U	Residual	48.6	46.3	43.0	41.0	37.8	36.7	34.9	31.5	52.1	
	Corrected	-	56.2	49.6	-	37.8	-	-	-	-	
	Insertion Loss	-	53.5	57.8	-	61.3	-	-	-	-	
	1/1 Oct.	63	125	250	500	1k	2k	4k	8k	Sum	
	Source	98.2	109.7	107.5	102.1	99.1	100.9	99.2	63.0	113.0	
8	Ambient	63.5	49.3	47.9	44.6	41.6	37.0	32.4	28.1	63.9	
9	Residual	61.2	49.5	45.9	42.0	40.4	38.4	33.9	29.5	61.7	
	Corrected	59.7	-	43.6	41.1	35.3	-	-	-	-	
	Insertion Loss	38.6	-	63.8	61.0	63.8	-	-	-	-	

	1/1 Oct.	63	125	250	500	1k	2k	4k	8k	Sum	
	Source	98.2	109.7	107.5	102.1	99.1	100.9	99.2	63.0	113.0	
4	Ambient	47.5	42.7	37.6	32.5	29.9	28.0	26.4	27.1	49.3	
U	Residual	56.5	53.7	42.8	38.3	33.3	34.0	32.7	29.9	58.5	
	Corrected	-	-	-	-	-	-	-	-	-	
	Insertion Loss	-	-	-	-	-	-	-	-	-	
	1/1 Oct.	63	125	250	500	1k	2k	4k	8k	Sum	
	Source	98.2	109.7	107.5	102.1	99.1	100.9	99.2	63.0	113.0	
6	Ambient	49.5	49.3	42.0	37.2	35.2	32.7	30.3	28.7	53.1	
	Residual	47.9	43.5	38.3	33.0	31.5	29.7	27.5	27.3	49.9	
	Corrected	44.5	48.0	39.5	35.1	32.8	29.7	27.0	23.0	50.3	
	Insertion Loss	53.7	61.7	67.9	67.1	66.3	71.2	72.1	40.1	76.7	

Note: 1/3 oct. data converted to 1/1 oct. for ease of reporting

APPENDIX G – Glazing Sound Insulation Data

Table 1 – Single Glazing

	Sound Insulation (dB) for Glass Thickness (mm)									
Thirdoctaveband Centre Frequency (Hz)	4	6	10	19	6.4 PVB					
100 125 160 200	$ \begin{array}{c} 17 \\ 23 \\ 22 \\ 21 \end{array} 20 $	$ \begin{array}{c} 18 \\ 22 \\ 22 \\ 22 \end{array} $ 20	24 26 28 26	25 29 31 31	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
250 315 400	21 21 22 24 26	26 26 29	28 28 29 32	32 32 35 36	26 26 29					
500 630 800	29 28 30 32	31 31 33 34	34 34 36 37	38 37 36 35	31 31 33 34					
1000 1250 1600	34 33 34 36	36 35 36 32	36 35 33 33	38 37 40 44	36 35 36 36					
2000 2500 3150 4000	36 34 31 25 31 28	26 29 30 34 37 36	38 36 41 43 44 44	47 46 50 52 55 54	34 33 31 35 39 38					
R _w (dB) R _W (dB) R _{TRA} (dBA)	27 30 27	29 32 28	33 36 32	37 40 35	30 33 29					

Table 3 - Double Windows (Secondary Sashes)

Thirdoctaveband Centre Frequency	Sound Insulation (dB) for Glass Thickness (mm)							
(Hz)	6/100/4	6/150/4	10/200/6					
100	25	27	32					
125	27 26	30 29	37 35					
160	27	30	39					
200	33	34	45					
250	33 34	34 35	46 46					
315	37	39	46					
400	41	42	47					
500	46 44	46 45	45 46					
630	50	50	45					
800	54	54	44					
1000	57 56	57 56	45 46					
1250	59	58	50					
1600	58	58	53					
2000	52 53	52 52	58 56					
2500	51	49	58					
3150	48	47	64					
4000	57 52	52 50	64 65					
$R_{m}(dB)$	44	44	47					
$R_{w}(dB)$	46	47	49					
$\overset{"}{R_{TRA}}$ (dBA)	37	39	45					

Source: Glass and Noise Control, Technical Bulletin, Pilkington

	Sound reduction index (dB)									
Glass	Octaveband Centre Frequency (Hz)							D. LC	D. LC	
	125	250	500	1000	2000	4000	R _w (C;C _t)	R _w	R _w +C	R _w +C _{tr}
Single glazing										
6.8 mm Pilkington Optiphon ™	26	27	31	36	40	39	36 (-1; -4)	36	35	32
8.8 mm Pilkington Optiphon ™	24	28	34	38	37	43	37 (-1; -4)	37	36	33
9.1 mm Pilkington Optiphon ™	26	29	34	38	38	43	37 (-1; -3)	37	36	34
12.8 mm Pilkington Optiphon [™]	30	32	37	39	41	51	39 (0; -2)	39	39	37
13.1 mm Pilkington Optiphon [™]	30	33	37	40	41	50	40 (0; -2)	40	40	38
Insulating glass units										
6 mm / 16 mm argon / 6.8 mm Pilkington Optiphon ™	22	27	35	42	41	48	38 (-2; -5)	38	36	33
6 mm / 16 mm argon / 8.8 mm Pilkington Optiphon [™]	24	26	40	48	46	54	41 (-3; -7)	41	38	34
8 mm / 16 mm argon / 9.1 mm Pilkington Optiphon [™]	24	29	41	47	47	55	43 (-3; -7)	43	40	36
10 mm / 16 mm argon / 9.1 mm Pilkington Optiphon [™]	29	33	44	46	49	57	45 (-2; -5)	45	43	40
8.8 mm Pilkington Optiphon[™] / 16 mm argon / 12.8 mm Pilkington Optiphon[™]	26	36	46	50	52	63	47 (-2; -7)	47	45	40
9.1 mm Pilkington Optiphon[™] / 20 mm argon / 13.1 mm Pilkington Optiphon[™]	29	39	49	52	55	63	50 (-3; -8)	50	47	42

Measurements undertaken in accordance with BS EN ISO 10140 and R_w (C; C_b) determined in accordance with BS EN ISO 717-1 For insulating glass units, there is little difference in the sound insulation for cavity widths in the range 6 to 16 mm Pendulum body impact resistance to BS EN 12600 for all Pilkington **Optiphon**" is Class 1 (B) 1 To achieve low U values in insulating glass units, Pilkington **Optiphon**" can be combined with low emissivity glass from the Pilkington **K Glass**" or Pilkington **Optitherm**" ranges To calculate performance data for Pilkington products, please use our Spectrum online calculator at www.pilkington.co.uk/spectrum For glass combinations to achieve an R_w value higher than 50 dB, please contact us for more details

Source: Pilkington Optiphon[™] , Laminated Glass for noise control