

Woods Mill, Glossop Flood Risk Assessment

Appendix F - Surface Water Runoff Calculations

· ·

				ref	
	erco sultants	Eden Court, Lon Parcwr, Ruthin, 01824 702220	Calculations		138
Client :		Lofthouse Property L	td.	no of pages a	attached:
Scheme :		Woods Mill, Glossop))		of 14
Section :		Surface Water Runo	ff	prefix SWR	revision A
prepared by:	Angharad L	lewelyn	date:	07/08	3/2014
checked by:	Aled Williar	ns	date:	08/08	/2014
approved by:	Deepak Kh	arat	date:	08/08	/2014
<u>Com</u> <u>Site descripti</u>	volun	f pre-development and post nes for greenfield or brownf	-development run-o field sites up to 200	ff rates an Ha	<u>d</u>
Proposed development with associate	elopment of l includes the d landscape	and at adjacent to Glossop Brook, W erection of a superstore with associa d and hard standing areas see page S entre of site) approx. 403855E 3940	ated car parking area, and WR14	yshire. residential bi	uilidngs
of up to 100 ye	ears and the	post development rainfall runoff in ac nable Drainage Systems. The peak r runoff volumes are also to be calcula nange should be included only in the	runoff rates are to be estin	nated for retur	n periods
Documents R 1. Interim Code 2. I o H Report	eferenced e of Practice 124 - Flood	for Sustainable Drainage Systems (I Estimation for Small Catchments (M Fixed Percentage Runoff Method			

- 4. Wallingford Procedure 1981
- 5. CIRIA C697 The SUDS Manual (Feb 2007)

Basis of estimates

The Interim Code of Practice for Sustainable Drainage Systems (July 2004)^[1] recommends the use of I o H 124^[2] for calculating peak greenfield runoff rates for sites up to 200 Ha. For site less than 50 Ha, the runoff should be calculated for 50 Ha and adjusted in proportion for the actual area. For sites greater than 200 Ha, the FEH runoff model should be used. CIRIA C697^[5] recommends the use of the FSSR 16^[3] runoff method for calculating the runoff volume for greenfield sites.

For brownfield sites with a recognised drainage system, the Rational Method⁽⁴⁾ has been used to calculate the runoff for the impermeable portions of the catchment (pre- & post development). For sites without a proper drainage system, the pre-development runoff is calculated as for a greenfield site, assuming soil type 5, regardless of type indicated on mapping.

In accordance with National Planning Policy Framework (NPPF) and assuming a 100yr projection, a 30% on peak rainfall intensity increase in rainfall / runoff has been included to allow for the climate change anticipated in the years 2085 - 2115.

Rainfall data is taken from maps in Defra / EA Tech Report W5-074/A Rev D (see page SWR10 & 11).

Standard Average Annual Rainfall and Soil classification from maps in FSR Report (see page SWR8 & 9).

N.B. These calculations are for planning purposes only and will need to be reviewed at the detailed design stage.

N e	terco		Court, Lon Parcwr, n, 01824 702220	Calculations	ref : w3138 prefix - page no. SWR2
Scheme :		M	loods Mill, Glossop		dated :
Section :		S	urface Water Runoff		07/08/2014
	<u>Basis of calc</u> Peak run-off r		mbination of IOH 124 met	hod & Rational meth	od ·
	Run-off volum	e based on con	nbination of FSSR 16 meth	od & Rational metho	od
	N.B. Rational development,	method used fo allowing for pre	r impervious portion of tota -development of site where	al area for both pre a e appropriate.	nd post
	Catchment	<u>Details - in</u>	out data_		
	Proportions	of soil type (fro	om maps)		
	Prop S1 Prop S2 Prop S3 Prop S4 Prop S5 Total fraction -Calculated v Calculated v	alue-of-SOIL alue of SPR	(x 0.15) F::::::::::::::::::::::::::::::::::::	<u> </u>	, ,
	SPR = 10S1	+ 30S2 + 37S3	+ 47S4 + 53S5		
	Region num AREA SOIL SAAR CWI	ber (Ha) (fraction) (mm)	₹ 10 Select from ▲ 3.8000 ឆ (1Ha =0.0 ∞ 0.450 ∞ Calculated ∞ 1150 ∞ From FSR ₩ 124.5 ∞ From FSR	1Km ²) 3 above 8 maps	
	M5-60 rainfa Ratio M5-60/ M100-6hr rai	M5-2d	■ 20.00 From Defr ● 0.30 ■ From Defr ■ 70.00 ■ From Defr	ra / EA maps	
	Storm durat	ion (min)	15 Mill (To give	peak run-off-15 mit	n for small site)
	PIMP Pre-de PIMP Post-d		42.00 Provided		
,	Pre-dev drai		Yes If "No", wl & pre-dev	hole site assumed pe PIMP taken as zero	ervious - Soil type 5 in following calcs
	<u>Climate cha</u> Rainfall incr		協調30 熟練 Based on Applied to	NPPF (for years 20) post development of	85 - 2115) case only

	· · · · · · · · · · · · · · · · · · ·			ref :
N	TECCO nsultants	Eden Court, Lon Parcwr, Ruthin, 01824 702220	Calculations	w3138
	i			prefix - page no.
Scheme :		Woods Mill, Glossop		SWR3
Section :		Surface Water Runoff		dated : . 07/08/2014
··········			· ·	
	Pre- & Post-develo	pment peak run-off - Ration	nal Method	
	(for impervious po	rtions of catchment only)		
`	Input data from shee	<u>t 2</u>		
	Total area (Ha)	3.8000 from sht 2		
	Pre dev PIMP (%)		Or zero if no pre-devel	opmont droine ne
	Post dev PIMP (%)	58.00 from sht 2	or zero il no pre-dever	opment drainage
	Pre-dev Imp area (Ha)	1.5960 calculated		`
	Post-dev Imp area (Ha) 2.2040 calculated		
	M5-60min rain (mm)	20.00 from sht 2		
	Ratio "r"	(0.30 sht 2		
	Climate change (%)	30 % from sht 2		
	Storm duration (min)	15.00 from sht 2		
	Rational Method			
	Peak run-off Qi = 2.78	Cv Cr i A		
	Z1 Factor from table	0.590 pro-rata	· n	
	Volume coeff Cv	0.75 🐘 (Typical 0.75	5)	
ł	Routing coeff Cr	Standard va	alue 1.3)	
<u>(</u>	Calculation			
٩	M5-Dmin rain (mm)	11:800 M5-60min *.	Z1 factor	
(Climate change factor	Applied to po	ost-development run-of	fonly
	Return period	1 yr 30 yr	100 yr	
	2 factor from table		×1.939	
	Rainfall (mm)	7.25	22.88	«·
	Rainfall intensity (mm/h	·) 29.0 🦛 72.3 🖉 🖄	91.5	
	Rainfall + CC (mm)		29.74 🗟	
н	R. Intensity + CC (mm/h	r) 🦮 37.7 🗰 🖂 94.0 💥 🖉	×119.0 🔛	
P	eak run-off rate			
P	re-development Qi (l/	s) 125.45a 312.77	395.83	
P	ost-development Qi(I	/s) 225.22 561.55	710.90	

	aterco		Court, Lon Parcwr,	Calcu	lations		ef : 3138
V 10	onsultants	Ruthi	in, 01824 702220			-	page no. NR4
Scheme :		v	Voods Mill, Glossop			da	ited :
Section :		S	urface Water Runoff			07/0	8/2014
	Pre & Post de IOH124 meth	evelopment od for pervi	peak run-off ious areas - Rationa	il method fo	or impervi	ous areas	, <u>1</u> , ,
	Input data from	n sheet 2					
	Total Area (Ha) Pre-dev PIMP (Post-dev PIMP Pre-dev Perv a Post-dev Perv a	%) (%) rea (Ha)	#3.8000 * from sht ## 42.00 ** from sht ## 58.00 ** from sht #2 2040 ** Calculat * 1.5960 ** Calculat	2 Or zero if i 3 ed < 50 Ha o	r 0.5 Km2	elopment dra	linage
	Region number SOIL SAAR	(fraction) (mm)	###10 1997 #50.450 from sht ##1150 # from sht	2 SOIL	Pre-dev	from sht 2 c if no draina	
	<u>Regional grow</u>	th factors					
-,	Multiplier for 1/ Multiplier for 1/ Multiplier for 1/	30 yrs	₩ 0.83 ₩ FSSR 1 ₩ 1.69 ₽ FSSR 1 ₩ 2.08 FSSR 1	4 table 1	lookup table	e)	
	Climate chang	je factor	Applied	to post-devel	opment run	-off only	
	<u>Mean annual f</u>	lood	Qbar = 0.00108*(Al	REA/100)^0.8	39*SAAR^1.	17*SOIL^2.	17
			Pre-develo			st developr	
	Qbar' (for 50 H Qbar (actual ar		0.39264 basis of			pro-rata (A	
	<u>Peak flows (lo</u>	<u>H 124)</u>					
	Return period Multiplier Peak run-off (n Peak + CC Qp		1 yr 30 yr 0.830 1.690 0.01437 0.0292 n/a n/a	2.080 *0.03600 *	1 yr 0.830 0.01040 0.01352	30 yr 1.690 0.02118 0.02753	100 yr 30.02607 3 30.03389 3
	Total peak flo	ws (I/s)					
	Perv area flow Imp area flow Total peak flo	-Qi (I/s)	iiii 14.37 ∞ / ∞ 29.25 ∞ 125.45 ≈ iiii 312.7 ∞ 139.82 = iiii 342.0	7.# ¥395.83	238.74	561.55 589.08	33.89 ** 710.90 ** 744.79
			Peak flow increas	e (I/s)	■ 98,92 ■	≥ 247.06 ■	312.96
	N.B. These calculat	ions are for plan	ning purposes only and will r	•	<u></u>	· · · · · ·	

.

4

• • •

	aterco	D Ed	en Court, Lon Parcwr,			ref : w3138
чч с	onsultani	R R	uthin, 01824 702220		culations	prefix - page no.
Scheme :			Woods Mill, Glossop	, .	·······	dated :
ection :			Surface Water Runof	f .		07/08/2014
	Pre & Pos	<u>t developm</u>	ent run-off volume	- FSSR 16		
	Applied to) pervious a 00yr 6hr sto	and impervious area	as		
		from sheet 2				
	Total area (i Pre-dev PIM	Ha)			if no nue de	
	Post-dev PI Pre-dev Pen Pre-dev Imp	VP (%) v Area (Ha)	58.00 from sht 2.2040 calculate	2 ed	n no pre-de	velopment drainage
	Post-dev Pe Post-dev Imp	rv Area (Ha) p Area (Ha)	1.5960 calculate 2.2040 calculate	d <u>Rainfall</u>		
	SAAR (mm) CWI		501150.0 from sht 378124.5 from sht	2 Rainfall	P (mm)	₩70.00 from sht 2
	SPR (%)		47.00 from sht		r Pcc (mm)	
I	DPR _{CWI} (%)			0.25*(CW	/I-125)	
	DPR _{RAIN} (%)		🧏 7.055 🔊 calc	0.45*(P-4	0)^0.7 for F	
	PR _p (%) PRi (%)	(perv area) (imp area)	353.930 calc 100.000 defined		PR _{CWI} + DP mpervious	
ક	Storm duratio	on (mins)	360 defined		,	
F	Run-off volu	me V = PR/1	100 * A*10000 * P/1000) = PR * A * P	/ 10 (m3)	
	where		ntage run-off	PR _p or PP		
		A = Catchm	ient area	A _p or A _i	(Ha)	
		P = Rainfall	depth (M100-360) limate change for post o	P or Pcc	(mm)	
		(molecting bi	mate change for post (uevelopment		
		D			Pre-dev -	Post dev incl CC
		Run-off volu	ime- Pervious area (m3 ime- Impervious area (n	i) . n3)	832.03 1117.20	783.26 2005.64
		Total run-of	ff volume (m3)		¥1949.23	2788.90
		Volume inci	rease (m3)		I	839.67

N °ai	Denco		ourt, Lon Pa , 01824 702		Calcula	ations	ref : w3138 prefix - page no SWR6	
Scheme :		V	Voods Mill,	Glossop			dated :	
Section :		S	urface Wate	er Runoff			07/08/20	14
	Z1 Factor fo	r England &	<u>Wales (</u>	Values fr	om BRE 36	<u>5 - Table</u>	<u>1)</u>	
			_ <u> </u>	Rainfall Du	ation (mins)		<u>_</u>	·
	<u>Ratio</u>	15	30	60	120	240	360	
	<u> </u>	0.450	0.670	1.000	1,480	2,170	2.750	
	0.12	0.430	0.690	1.000	1.420	2.020	2.460	
	0.15	0.510	0.710	1.000	1.360	1.860	2.250	
	0.18	0.530	0.723	1.000	1.340	1.800	2.163	
	0.20	0.540	0.730	1.000	1.330	1.770	2.120	
	0.24	0.560	0.750	1.000	1.300	1.710	2.000	
	0.24	0.567	0.753	1.000	1.290	1.687	1.960	
ĺ	0.27	0.580	0.760	1.000	1.270	1.640	1.880	
	0.30	0.590	0.770	1.000	1.250	1.570	1.780	
	0.33	0.610	0.780	1.000	1.230	1.530	1.730	
	0.35	0.617	0.787	1.000	1.223	1.497	1.690	
	0.36	0.620	0.790	1.000	1.220	1.480	1.670	
	0.39	0.630	0.800	1.000	1.210	1.460	1.620	
	0.40	0.633	0.803	1.000	1.207	1,447	1.603	
		0.640	0.810	1.000	1.200	1.420	1.570	
	0.42	0.040	0.010		1.190	1.380	1.510	

Z2 Factors for England & Wales from table 6.2 - Wallingford Procedure

M5 Rain	Diff	<u>M1</u>	<u>M30</u>	<u>M100</u>
(mm)	(mm)			
		1	30	100
5.00	5	0.62	1.45	1.79
10.00	5	0.61	1.52	1.91
15.00	5	0.62	1.55	1.99
20.00	5	0.64	1.58	2.03
25.00	5	0.66	1.57	2.01
		· · ·		
30.00	10	0.68	1.55	1.97
40.00	10	0.70	1.50	1.89
50.00	25	0.72	1.45	1.84
75.00	25	0.76	1.36	1.64
100.00	50	0.78	1.32	1.54
150.00	50	0.78	1.26	1.45
200.00	······································	0.78	1.24	1.40
N.E	3. M30 Facto	ors interpolat	ed graphica	lly

N.B. These calculations are for planning purposes only and will need to be reviewed at the detailed design stage.

`		Eden Court, Lon Parcwr,	Calculations	ref : w3138
		Ruthin, 01824 702220		prefix - page no.
Scheme :	:	Woods Mill, Glossop	<u></u>	SWR13
Section :	<u> </u>			dated :
		Surface Water Runoff		07/08/2014
	Pre-developm	<u>ent Area</u>		
0.47				
			でで、「ない」	A 22
	w B	是这个不多	對後本小语	
			会社会力量	
	迎居过于			
12			S CENY	
			The second	
		June of the second second		
		real and the second	一路小	
			, <u> </u>	
-	-			
F	Total Area = 3.8h Permeable Area =	ia 58% = 6,460m² (includes hard standing	aroan with no formal days	
				nage systems).
1		a (buildings only) = 42% = 16,000m ²	2	
		Site Boundary		
• • •				
				1

...

.

Woods Mill, Glossop Flood Risk Assessment

Appendix G – Storm Water Storage Calculations

· · · · · ·

waterco		n Court, Lor thin, 01824		Calculati	ions	ref	w3138
lient:	<u> </u>	Lot	fhouse Propert	y Ltd	Pa	ge 1 of	1
Scheme:		w	oods Mill, Glos	sop	F	Prefix	SWS
Section:		Sto	orm Water Stor	age	re	evision	Α
Prepared by:	Angharag	Llewelyn				date:	19/09/2014
	Aled Willi					date:	19/09/2014
Checked by:						date:	19/09/2014
Approved by:	Aled Willi						
M5-60 min rai Ratio M5-60 / Climate chang	M5-2day -	R]%	(from map) (from map)		
		. r					
Impervious A Allowable dis	rea (A) (Ha charge (Q	a) [2.2040 140.000		(subject to a	igreeme	nt)
Impervious A Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan	charge (Q efficient (ficient (Cr) nt (C = Cd	a) [Cd) [* Cr) [i contra]I/s		summe	nt) er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan	charge (Q efficient (ficient (Cr) nt (C = Cd ge adj faci	a) (Cd) (* Cr) tor (FC)	0.840 0.8400 0.8400 0.8400 0.8400 0.84000 0.840000000000]I/s] 	(typical 0.75 (standard va	summe alue)	
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u>	charge (Q efficient (ficient (Cr) nt (C = Cd ge adj fact me require	a) (Cd) (* Cr) tor (FC)	0.840 1.300 1.092 1.300 0*D*60 (Litres]I/s] 	(typical 0.75 (standard va SW Run-of	summe alue)	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratic</u> (<u>Minutes)</u>	charge (Q efficient (ficient (Cr) nt (C = Cd ge adj fact <u>ge adj fact</u> <u>me require</u> on (D) <u>(Hrs)</u>	a) (Cd) * Cr) tor (Fc) ed = (Qr-Qa <u>rainfall</u> (<u>mm/hr)</u>	0.840 0.840 1.300 1.092 1.300 0*D*60 (Litres <u>Run-off rate</u> (L/s)]I/s 	(typical 0.75 (standard va SW Run-of	summe alue)	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratic</u> (<u>Minutes)</u> 5	charge (Q efficient (ficient (Cr) nt (C = Cd ge adj fact <u>ge adj fact</u> <u>me require</u> on (D) <u>(Hrs)</u> 0.08	a) (Cd) (* Cr) tor (Fc) (ed = (Qr-Qa <u>rainfall</u> (<u>mm/hr)</u> 139.6	0.840 0.840 1.300 1.092 1.300 1.300 0*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949]I/s <u>Storage Vol</u> <u>(m3)</u> 	(typical 0.75 (standard va SW Run-of	summe alue)	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratic</u> (<u>Minutes)</u> 5 10	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact <u>ge adj fact</u> <u>me require</u> on (D) <u>(Hrs)</u> 0.08 0.17	a) (Cd) * Cr) tor (FC) ed = (Qr-Qa <u>rainfall</u> (<u>mm/hr)</u> 139.6 107.6	0.840 1.300 1.092 1.300 1.300 1.300 D*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308]I/s 	(typical 0.75 (standard va SW Run-of	summe alue)	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratic</u> (<u>Minutes)</u> 5 10 15	charge (Q efficient (ficient (Cr) nt (C = Cd ge adj fact me require on (D) (<u>Hrs)</u> 0.08 0.17 0.25	a) (Cd) (* Cr) tor (Fc) (ed = (Qr-Qa <u>rainfall</u> (<u>mm/hr)</u> 139.6	0.840 0.840 1.300 1.092 1.300 1.300 0*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949	JI/s <u>Storage Vol</u> (<u>m3)</u> 322.2 477.8 568.4 709.1	(typical 0.75 (standard va SW Run-of	summe alue)	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratic</u> (<u>Minutes</u>) 5 10 15 30	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact <u>ge adj fact</u> <u>me require</u> on (D) <u>(Hrs)</u> 0.08 0.17	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa <u>rainfall</u> (<u>mm/hr)</u> 139.6 107.6 88.7	140.000 0.840 1.300 1.092 1.300 D*D*60 (Litres <u>Run-off rate</u> <u>(L/s)</u> 1213.949 936.308 771.540 533.959 419.866	JI/s <u>Storage Vol</u> <u>(m3)</u> 322.2 477.8 568.4 709.1 755.6	(typical 0.75 (standard va	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratic</u> (<u>Minutes)</u> 5 10 15	charge (Q efficient (ficient (Cr) nt (C = Cd ge adj fact me require on (D) (<u>Hrs)</u> 0.08 0.17 0.25 0.5	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6	0.840 0.840 1.300 1.092 1.300 1.300 0.*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308 771.540 533.959 419.866 353.141	I/s <u>Storage Vol</u> <u>(m3)</u> 322.2 477.8 568.4 709.1 755.6 767.3	(typical 0.75 (standard va SW Run-of	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm durations</u> 5 10 15 30 45	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require 0.08 0.17 0.25 0.5 0.75 1 1.5	a) Cd) * Cr) tor (Fc) ad = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0	0.840 1.300 1.092 1.300 1.300 1.300 0.*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308 771.540 533.959 419.866 353.141 270.038	I/s Storage Vol (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2	(typical 0.75 (standard va	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratio</u> (<u>Minutes</u>) 5 10 15 30 45 60	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require on (D) (<u>Hrs)</u> 0.08 0.17 0.25 0.5 0.5 0.75 1	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6	0.840 1.300 1.092 1.300 1.300 1.300 1.300 0.*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308 771.540 533.959 419.866 353.141 270.038 222.256	I/s Storage Vol (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2	(typical 0.75 (standard va	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratio</u> (<u>Minutes</u>) 5 10 15 30 45 60 90	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require 0.08 0.17 0.25 0.5 0.75 1 1.5	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6 21.8	0.840 1.300 1.092 1.300 1.3059 4.19.866 3.53.141 2.70.038 2.22.256 1.89.689	I/s <u>Storage Vol</u> (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2 447.2	(typical 0.75 (standard va	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratic</u> (<u>Minutes</u>) 5 10 15 30 45 60 90 120	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require 0.08 0.17 0.25 0.5 0.75 1 1.5 2	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6 21.8 19.2	140.000 0.840 1.300 1.092 1.300	I/s <u>Storage Vol</u> (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2 447.2 292.4	(typical 0.75 (standard va	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coef O/A Coefficie Climate chan Storage Volu Storm duratic (Minutes) 5 10 15 30 45 60 90 120 150	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require 0.08 0.17 0.25 0.5 0.75 1 1.5 2 2.5	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6 21.8 19.2 15.6	0.840 1.300 1.092 1.092 1.300 1.300 1.1.30	JI/s <u>Storage Vol</u> (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2 447.2 292.4 0.0	(typical 0.75 (standard va SW Run-of	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coeff O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratic</u> (<u>Minutes</u>) 5 10 15 30 45 60 90 120 150 180	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require 0.08 0.17 0.25 0.5 0.75 1 1.5 2 2.5 3	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6 21.8 19.2 15.6 11.7	0.840 1.300 1.092 1.300 1.300 1.300 1.300 0.*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308 771.540 533.959 419.866 353.141 270.038 222.256 189.689 167.069 135.610 101.518	I/s <u>Storage Vol</u> (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2 447.2 292.4 0.0 0.0	(typical 0.75 (standard va SW Run-of	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coeff O/A Coefficie Climate chan <u>Storage Volue</u> <u>Storm duratic</u> (<u>Minutes</u>) 5 10 15 30 45 60 90 120 150 180 240	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require 0.08 0.17 0.25 0.5 0.75 1 1.5 2 2.5 3 4	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6 21.8 19.2 15.6 11.7 9.5	0.840 1.300 1.092 1.300 1.300 1.300 0)*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308 771.540 533.959 419.866 353.141 270.038 222.256 189.689 167.069 135.610 101.518 82.210	JI/s Storage Vol (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2 447.2 292.4 0.0 0.0 0.0	(typical 0.75 (standard va SW Run-of	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coeff O/A Coefficie Climate chan <u>Storage Volue</u> <u>Storm duratic</u> (<u>Minutes</u>) 5 10 15 30 45 60 90 120 150 180 240 360	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require 0.08 0.17 0.25 0.5 0.75 1 1.5 2 2.5 3 4 6	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6 21.8 19.2 15.6 11.7 9.5 8.1	140.000 0.840 1.300 1.092 1.300 0.*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308 771.540 533.959 419.866 353.141 270.038 222.256 189.689 167.069 135.610 101.518 82.210 70.262	J//s Storage Vol (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2 447.2 292.4 0.0 0.0 0.0 0.0	(typical 0.75 (standard va SW Run-of	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coeff O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratio</u> (<u>Minutes</u>) 5 10 15 30 45 60 90 120 150 180 240 360 480	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require on (D) (Hrs) 0.08 0.17 0.25 0.5 0.75 1 1.5 2 2.5 3 4 6 8	a) Cd) * Cr) tor (Fc) ad = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6 21.8 19.2 15.6 11.7 9.5 8.1 7.1	140.000 0.840 1.300 1.092 1.300 0)*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308 771.540 533.959 419.866 353.141 270.038 222.256 189.689 167.069 135.610 101.518 82.210 70.262 61.398	J//s <u>Storage Vol</u> (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2 447.2 292.4 0.0 0.0 0.0 0.0 0.0 0.0	(typical 0.75 (standard va SW Run-of	summe alue) f (Qr) = :	er / 0.84 winter)
Allowable dis Discharge Co Routing Coeff O/A Coefficie Climate chan <u>Storage Volu</u> <u>Storm duratio</u> (<u>Minutes</u>) 5 10 15 30 45 60 90 120 150 180 240 360 480 600	charge (Q. efficient (ficient (Cr) nt (C = Cd ge adj fact me require on (D) (Hrs) 0.08 0.17 0.25 0.5 0.75 1 1.5 2 2.5 3 4 6 8 10	a) Cd) * Cr) tor (Fc) ed = (Qr-Qa rainfall (mm/hr) 139.6 107.6 88.7 61.4 48.3 40.6 31.0 25.6 21.8 19.2 15.6 11.7 9.5 8.1	140.000 0.840 1.300 1.092 1.300 0.*D*60 (Litres <u>Run-off rate</u> (L/s) 1213.949 936.308 771.540 533.959 419.866 353.141 270.038 222.256 189.689 167.069 135.610 101.518 82.210 70.262	J//s Storage Vol (m3) 322.2 477.8 568.4 709.1 755.6 767.3 702.2 592.2 447.2 292.4 0.0 0.0 0.0 0.0	(typical 0.75 (standard va SW Run-of	summe alue) f (Qr) = :	er / 0.84 winter)

. .

. .

.

P

•