

June 2014

96 Green Lane Buxton SK17 9DJ Tel 01298 71761 07973 711589 enquiries@structech.co.uk

Calculations for 67, Brown Edge Rd Buxton

The following details have been determined following the carrying out of the attached calculations. These calculations were carried out using information following a site visit and from plans proposed.

- For purlin supports remove existing cavity wall and blck or prop off either a 203 x 133 (25) UB or a 152 x 152 (30) UC sat on 450 x 150 x 100 reinforced padstones.
- For new purlins spanning 3.75m. use a 250 x 100 C24 timber for top purlin and a 225 x 75 C24 timber for bottom purlin.
- If existing purlins need to be extended use a system as shown in Figure 1 at end of calculations.
- For main decking frame use 150 x 50 C24 joists @ 450c/s on 225 x 75 C24 main cross supports on 150 x 150 posts on 0.5m x 0.5m concrete bases as shown in figure at end of calculations.

Any problems please ring the above office.

S. F Wherry

CONSULTANT STRUCTURAL ENGINEERS & SURVEYORS

PROJECT MANAGERS

CDM CO-ORDINATORS

Structural and Technical	Job:-	Page:-
Systems Ltd		1
96, Green Lane	Calculations for	Date:-
Buxton	67 Brown Edge Rd	June 2014
Derbyshire	Buxton	June 2014
SK17 9DJ		Calcs by:-
Tel 01298 71761		SFW
Mobile 07973 711589		51 11

Loadings kN/m²

Roof

Dead 1.1

Live 0.8 1.9

Decking floor

Live 1.5

Dead 0.5 2.0

Loadings

The loadings are as shown in the attached drawings. It is presumed that the existing gable will be taken down and the purlins either propped with minimum 150×100 timbers or lightweight blockwork. The middle wall in the bungalow is loadbearing and the beams are designed as single span to sit on this.

The main structural layout of the decking is also shown on the attached drawings

Structural and Technical	Job:-	Page:-
Systems Ltd		2
96, Green Lane	Calculations for	Date:-
Buxton	10 Brown Edge Rd	Sept 2013
Derbyshire	Buxton	Sept 2013
SK17 9DJ		Calcs by:-
Tel 01298 71761		SFW
Mobile 07973 711589		51 77

Steel supports

Effective span 4.1m.

This beam basically carries two purlin loads and some slight blockwork load of average 0.75m. which will provide a factor of safety.

Bottom dead purlin point load $3.5 \times 1.3 \times 1.1 = 5$ Bottom live purlin load $3.5 \times 1.3 \times 0.8 = 3.65$

Top dead purlin point load $3.5 \times 2.1 \times 1.1 = 8.1$ Bottom live purlin load $3.5 \times 2.1 \times 0.8 = 5.9$

From Pages C1 – C12 use either a 203 x 133 (25) UB or a 152 x 152 (23) UC sat on 450 x 150 x 100 reinforced padstones.

Padstone design for under beams

Maximum factored shear force = 46kN

Actual stress with padstones below = $\frac{4610^3}{450 \text{ x } 100}$ = 1.02 N/mm²

Allowable stress with brick $= \frac{1.25 \text{ fk}}{\gamma \text{m}} = \frac{1.25 \text{ x } 6.4}{3.1} = 2.58 \text{ N/mm}^2 \text{ O.K}$

Structural and Technical	Job:-	Page:-
Systems Ltd		3
96, Green Lane	Calculations for	Date:-
Buxton	10 Brown Edge Rd	
Derbyshire	Buxton	Sept 2013
SK17 9DJ		Calcs by:-
Tel 01298 71761		SFW
Mobile 07973 711589		S1 W

Existing purlin strengthening

Existing size approx. 175 x 50

Shear at one end = 9kN

Design connection as shown in Figure 1 at end of calculations

Purlin for new roof area

Maximum span 3.75m

Dead load carried on upper purlin 2.1 x 1.1 = 2.3 (1.40 on lower) Live load $2.1 \times 0.8 = 1.7$ (1.0 lower)

From Pages C13 – C18 use a 250 x 100 C24 timber sat upright for top purlin and 225 x 75 C24 timber for bottom purlin (def'n do exceed codes by 2mm but should be considered adequate).

Structural and Technical	Job:-	Page:-
Systems Ltd		3
96, Green Lane	Calculations for	Date:-
Buxton	10 Brown Edge Rd	
Derbyshire	Buxton	Sept 2013
SK17 9DJ		Calcs by:-
Tel 01298 71761		SFW
Mobile 07973 711589		S1 W

Decking

Worst joist position is for possible cantilever at end

B.M. = $1.5 \times 1.5/2 \times 0.45 \times 2 = 1.01$

With C24 timber

 $Zreqd = 1.01\ 10E6/7.5 = 1.35E5$

With 150 x 50

Zact = $150 \times 150 \times 50/6 = 1.88E5$ O.K.

For joists use 150 x 50 C24 joists @ 450c/s

Max. span of support beam 2.7m Load = $4.6/2 \times 2 = 4.6 \text{kN/m} \text{ run } (1.15 \text{ dead}, 3.45 \text{ live})$

From Pages C19 – C22 use 225 x 75 C24 timber for main supports

For posts maximum load = $1.25 \times 12.42 = 15.5 \text{kN}$

Say max. height = 1.8m

From Pages C23 – C25 use 150 x 150 C24 timber for main posts on 0.5 x 0.5 concrete bases.

Structural and Technical Systems 96, Green Lane
Buxton

Structural alterations

Page: C1 Made by: SFW

Date: 24.06.14 Ref No: C702

Office: 5901

Location: Brown Edge Rd

Simply supported steel beam subject to lateral torsional buckling

Calculations are in accordance with BS5950-1:2000. Simple beam with intermediate lateral restraints in accordance with Clause 4.3.5.2.

The n'th point load is shown: Wn = Wnd + Wni where suffices: d denotes dead i denotes imposed

The moment capacity of the section is determined from 4.2.5.2 or 4.2.5.3 and is based on the classification obtained from Table 11.

Beam span

L=4.1 m

Section properties

203 x 133 x 25 UB.

Dimensions (mm): D=203.2 B=133.2 t=5.7 T=7.8 r=7.6

Properties (cm): Ix=2340 Iy=308 Sx=258 Sy=70.9 J=5.96

A=32 ry=3.1024 rx=8.5513

Strength of steel - Clause 3.1.1

The material thickness is 7.8 mm and the steel grade is S 275.

Design strength $py=275 \text{ N/mm}^2$ Young's Modulus $E=205 \text{ kN/mm}^2$

Loading (unfactored)

Dead UDL (including S.W) wd=1.7 kN/m Imposed UDL wi=0 kN/m Dead point load 1 (+ve down) W1d=5 kN Imposed point load 1 W1i=3.65 kN Distance from L.H. supp to load 1 x1=1.3 m Dead point load 2 W2d=8.1 kN Imposed point load 2 W2i=5.9 kN Distance from L.H. supp to load 2 x2=2.7 m

Structural and Technical Systems

96, Green Lane

Buxton

Structural alterations

Page: C2

Made by: SFW

Date: 24.06.14

Ref No: C702

Office: 5901

Factored loads

Distributed load w'=wd*1.4+wi*1.6=1.7*1.4+0*1.6

=2.38 kN/m

Point load 1 W1'=W1d*1.4+W1i*1.6=5*1.4+3.65*1.6

=12.84 kN

Point load 2 W2'=W2d*1.4+W2i*1.6=8.1*1.4+5.9*1.6

=20.78 kN

Factored shear force

At end B Fvb=w'*L/2+(W1'*x1+W2'*x2)/L

=2.38*4.1/2+(12.84*1.3+20.78*2.7)

/4.1

=22.635 kN

At end A Fva=w'*L+W1'+W2'-Fvb

=2.38*4.1+12.84+20.78-22.635

=20.743 kN

Max shear is at end B Fve=Fvb=22.635 kN

Unfactored end shears

At end B dead Fudb=wd*L/2+(W1d*x1+W2d*x2)/L

=1.7*4.1/2+(5*1.3+8.1*2.7)/4.1

=10.405 kN

At end B imposed Fuib=wi*L/2+(W1i*x1+W2i*x2)/L

=0*4.1/2+(3.65*1.3+5.9*2.7)/4.1

=5.0427 kN

At end A dead Fuda=wd*L+W1d+W2d-Fudb

=1.7*4.1+5+8.1-10.405

=9.6655 kN

At end A imposed Fuia=wi*L+W1i+W2i-Fuib

=0*4.1+3.65+5.9-5.0427

=4.5073 kN

Factored moment

Moment at load W1 (+ve sagging) N

 $M1=Fva*x1-w'*x1^2/2$

 $=20.743*1.3-2.38*1.3^2/2$

=24.955 kNm

Shear to left of W1 F1=Fva-w'*x1=20.743-2.38*1.3

=17.649 kN

Shear to right of W1 Fr=Fva-w'*x1-W1'

=20.743-2.38*1.3-12.84

=4.8094 kN

Moment at load W2 (+ve sagging) $M2=Fva*x2-W1'*(x2-x1)-w'*x2^2/2$

=20.743*2.7-12.84*(2.7-1.3)-2.38

*2.7^2/2

=29.356 kNm

Shear to left of W2 Fl=Fva-W1'-w'*x2

=20.743-12.84-2.38*2.7

=1.4774 kN

Shear to right of W2 Fr=Fva-w'*x2-W1'-W2'

=20.743-2.38*2.7-12.84-20.78

=-19.303 kN

Structural and Technical Systems Page: C3
96, Green Lane Made by: SFW
Buxton Date: 24.06.14

Structural alterations Ref No: C702

Office: 5901

Maximum BM occurs at 2nd load M=M2=29.356 kNm Corresponding shear force F=-Fr=19.303 kN

Classification - Clause 3.5.2

Classify outstand element of compression flange:

Parameter (Table 11 Note b) $e=(275/py)^0.5=(275/275)^0.5$

=1

Outstand b=B/2=133.2/2=66.6 mmRatio b'T=b/T=66.6/7.8=8.5385

As $b/T \le 9e$ (9), outstand element of compression

flange is classified as Class 1 plastic.

Classify web of section:

Depth between fillet radii d=D-2*(T+r)=203.2-2*(7.8+7.6)

=172.4 mm

Ratio d't=d/t=172.4/5.7=30.246

Neutral axis is assumed to be at mid-depth of section.

As $d/t \le 80e$ (80), web is classified as Class 1 plastic.

Shear buckling

Since d/t < 70e no check for shear buckling is required.

Buckling resistance

Since the beam is subject to possible lateral torsional buckling, the buckling resistance moment Mb is first considered rather than the moment capacity Mc as a guide to selection.

Effective length - Clause 4.3.5.2

Beam is assumed to be laterally restraint at supports only. Length of beam between restraints LT=L=4.1~m In accordance with Clause 4.3.5.2 for beams with effective lateral restraints at intervals within their length subject to normal loading conditions Effective length Le=LT=4.1~m

Clause 4.3.6.6 and Table 18

Equivalent uniform moment factor

The member is not loaded between restraints.

Maximum moment on segment Me=29 kNm

Far end BM betaM=24 kNm

Table 18 beta factor beta=betaM/Me=24/29=0.82759

Equivalent uniform moment factor $mLT=TABLE\ 18$ for beta=0.82759

=0.93103

```
Structural and Technical Systems
```

96, Green Lane Buxton

Ref No: C702 Structural alterations

Office: 5901

Page: C4

Date: 24.06.14

Made by: SFW

Resistance to lateral-torsional buckling - Clause 4.3.6

ry=SQR(Iy/A)=SQR(308/32)Radius gyration about minor axis

=3.1024 cm

Slenderness of section lambda=Le/ry*100=4.1/3.1024*100

=132.15

Buckling parameter $u = (4*Sx^2*(1-Iy/Ix)/(A^2*((D-T)))$

/10)^2))^0.25

 $= (4*258^2*(1-308/2340)/(32^2)$

*((203.2-7.8)/10)^2))^0.25

=0.87693

Torsional index $x=0.566*((D-T)/10)*(A/J)^0.5$

 $=0.566*((203.2-7.8)/10)*(32/5.96)^0.5$

=25.627

Ratio ratio=lambda/x=132.15/25.627

=5.1569

Slenderness factor $v=1/((1+0.05*ratio^2)^0.25)$

 $=1/((1+0.05*5.1569^2)^0.25)$

=0.80942

Ratio ßw betaw=1.0

Equivalent slenderness lamLT=u*v*lambda* (betaw) ^0.5

 $=0.87693*0.80942*132.15*(1)^0.5$

=93.804

Limiting slenderness $lamlo=0.4*((PI^2*E*10^3)/py)^0.5$

 $=0.4*((3.1416^2*205*10^3)$

 $/275)^0.5$

=34.31

Perry coefficient

etaLT=0.007*(lamLT-lamlo) =0.007*(93.804-34.31)

=0.41646

pe=PI^2*E*10^3/(lamLT^2) Elastic strength

 $=3.1416^2*205*10^3/(93.804^2)$

 $=229.94 \text{ N/mm}^2$

Factor phiLT=(py+(etaLT+1)*pe)/2

= (275 + (0.41646 + 1) * 229.94) / 2

 $=300.35 \text{ N/mm}^2$

pey=pe*py=229.94*275=63232 Factor

Bending strength $pb = (pey) / (phiLT + ((phiLT^2 - pey)^0.5))$

 $=(63232)/(300.35+((300.35^2)$

 $-63232)^0.5)$

 $=136.1 \text{ N/mm}^2$

Buckling resistance moment $Mb=Sx*pb/10^3=258*136.1/10^3$

=35.115 kNm

Equivalent uniform moment factor mLT=0.93103

Since M \leq Mb/mLT (29.356 kNm \leq 37.716 kNm), section OK for

lateral torsional buckling resistance.

Check section for combined moment and shear

Maximum moment and co-existent shear

Shear area Av=t*D=5.7*203.2=1158.2 mm²

Pv=0.6*py*Av/10^3=0.6*275*1158.2/10^3 Shear capacity

=191.11 kN

Fv=F=19.303 kNDesign shear force

```
Structural and Technical Systems
                                                                   Page: C5
96, Green Lane
                                                               Made by: SFW
                                                                   Date: 24.06.14
Buxton
Structural alterations
                                                                 Ref No: C702
                                                                 Office: 5901
Elastic modulus
                                        Z=Ix/(D/20)=2340/(203.2/20)
                                         =230.31 cm<sup>3</sup>
Since Fv < 0.6 Pv
Moment capacity for compact sec Mc=py*Sx/10^3=275*258/10^3
                                           =70.95 \text{ kNm}
Since M \leq Mc ( 29.356 kNm \leq 70.95 kNm ), applied moment within
moment capacity.
Maximum shear and coexistent moment
Shear capacity
                                        Pv=191.11 kN
Design shear force
                                        Fv=Fve=22.635 kN
Coexistent moment
                                        M' = 0 kNm
Since Fv \leq Pv ( 22.635 kN \leq 191.11 kN ), shear force within
shear capacity.
Check for deflection
Imposed load only considered in deflection calculation
UDL for deflection calculation wu=wi=0 \text{ kN/m}
Central UDL defin
                                         DELw=5*wu*L^4/(384*E*Ix)*10^5
                                             =5*0*4.1<sup>4</sup>/(384*205*2340)*10<sup>5</sup>
                                             =0 mm
Constant for defin
                                         const=L^3*10^5/(48*E*Ix)
                                               =4.1^3*10^5/(48*205*2340)
                                               =0.29932
Distance for defln
                                        a=x1=1.3 m
Point load 1 for defin calc
                                        W1=W1i=3.65 \text{ kN}
Centl defln for W1
                                        DELW1 = (3*a/L-4*(a/L)^3)*W1*const
                                               = (3*1.3/4.1-4*(1.3/4.1)^3)*3.65
                                                *0.29932
                                               =0.89993 mm
                                        a=L-x2=4.1-2.7=1.4 \text{ m}
Distance for defln
Point load 2 for defln calc
                                        W2=W2i=5.9 kN
                                        DELW2 = (3*a/L-4*(a/L)^3)*W2*const
Centl defln for W2
                                               = (3*1.4/4.1-4*(1.4/4.1)^3)*5.9
                                                *0.29932
                                              =1.5278 mm
Total central defin
                                        DEL=DELw+DELW1+DELW2=0+0.89993+1.5278
                                            =2.4278 mm
From Table 8
Limiting deflection (brittle) DELlim=L*1000/360=4.1*1000/360
                                                =11.389 \text{ mm}
Since DEL \leq DELlim ( 2.4278 mm \leq 11.389 mm ) OK for deflection.
  SECTION
                                         203 x 133 x 25 UKB Grade S 275
                                        Shear force 22.635 kN
Shear capacity 191.11 kN
Max. applied moment 29.356 kNm
Moment capacity 70.95 kNm
Buckling resistance 35.115 kNm
Moment factor (mLT) 0.93103
Resistance (Mb/mLT) 37.716 kNm
Deflection 2 4278 mm
  DESIGN
  SUMMARY
                                         Deflection
                                                                    2.4278 mm
                         Limiting deflection 11.389 mm

DL shear at A 9.6655 kN

Unfactored LL shear at A 4.5073 kN
```

Structural and Technical Systems 96, Green Lane Buxton Structural alterations

Page: C6
Made by: SFW
Date: 24.06.14

Ref No: C702

end shears DL shear at B 10.405 kN LL shear at B 5.0427 kN

No436

Structural and Technical Systems 96, Green Lane
Buxton

Structural alterations

Page: C7
Made by: SFW

Date: 24.06.14 Ref No: C702

Office: 5901

Location: Brown Edge Rd

Simply supported steel beam subject to lateral torsional buckling

Calculations are in accordance with BS5950-1:2000. Simple beam with intermediate lateral restraints in accordance with Clause 4.3.5.2.

The n'th point load is shown: Wn = Wnd + Wni where suffices: d denotes dead i denotes imposed

The moment capacity of the section is determined from 4.2.5.2 or 4.2.5.3 and is based on the classification obtained from Table 11.

Beam span

L=4.1 m

Section properties

152 x 152 x 30 UC.

Dimensions (mm): D=157.6 B=152.9 t=6.5 T=9.4 r=7.6 Properties (cm): Ix=1750 Iy=560 Sx=248 Sy=112 J=10.5

A=38.3 ry=3.8238 rx=6.7596

Strength of steel - Clause 3.1.1

The material thickness is 9.4 mm and the steel grade is S 275.

Design strength $py=275 \text{ N/mm}^2$ Young's Modulus $E=205 \text{ kN/mm}^2$

Loading (unfactored)

Dead UDL (including S.W) wd=1.7 kN/m Imposed UDL wi=0 kN/m Dead point load 1 (+ve down) W1d=5 kN Imposed point load 1 W1i=3.65 kN Distance from L.H. supp to load 1 x1=1.3 m Dead point load 2 W2d=8.1 kN Imposed point load 2 W2i=5.9 kN Distance from L.H. supp to load 2 x2=2.7 m

Structural and Technical Systems

96, Green Lane

Buxton

Structural alterations

Page: C8

Made by: SFW

Date: 24.06.14

Ref No: C702

Office: 5901

Factored loads

Distributed load w'=wd*1.4+wi*1.6=1.7*1.4+0*1.6

=2.38 kN/m

Point load 1 W1'=W1d*1.4+W1i*1.6=5*1.4+3.65*1.6

=12.84 kN

Point load 2 W2'=W2d*1.4+W2i*1.6=8.1*1.4+5.9*1.6

=20.78 kN

Factored shear force

At end B Fvb=w'*L/2+(W1'*x1+W2'*x2)/L

=2.38*4.1/2+(12.84*1.3+20.78*2.7)

/4.1

=22.635 kN

At end A Fva=w'*L+W1'+W2'-Fvb

=2.38*4.1+12.84+20.78-22.635

=20.743 kN

Max shear is at end B Fve=Fvb=22.635 kN

Unfactored end shears

At end B dead Fudb=wd*L/2+(W1d*x1+W2d*x2)/L

=1.7*4.1/2+(5*1.3+8.1*2.7)/4.1

=10.405 kN

At end B imposed Fuib=wi*L/2+(W1i*x1+W2i*x2)/L

=0*4.1/2+(3.65*1.3+5.9*2.7)/4.1

=5.0427 kN

At end A dead Fuda=wd*L+W1d+W2d-Fudb

=1.7*4.1+5+8.1-10.405

=9.6655 kN

At end A imposed Fuia=wi*L+W1i+W2i-Fuib

=0*4.1+3.65+5.9-5.0427

=4.5073 kN

Factored moment

Shear to right of W1

Moment at load W1 (+ve sagging)

 $M1=Fva*x1-w'*x1^2/2$

 $=20.743*1.3-2.38*1.3^2/2$

=24.955 kNm

Shear to left of W1 Fl=Fva-w'*x1=20.743-2.38*1.3

=17.649 kN

Fr=Fva-w'*x1-W1'

=20.743-2.38*1.3-12.84

=4.8094 kN

Moment at load W2 (+ve sagging) $M2=Fva*x2-W1'*(x2-x1)-w'*x2^2/2$

=20.743*2.7-12.84*(2.7-1.3)-2.38

*2.7^2/2

=29.356 kNm

Shear to left of W2 Fl=Fva-W1'-w'*x2

=20.743-12.84-2.38*2.7

=1.4774 kN

Shear to right of W2 Fr=Fva-w'*x2-W1'-W2'

=20.743-2.38*2.7-12.84-20.78

=-19.303 kN

Structural and Technical Systems Page: C9 96, Green Lane Made by: SFW Date: 24.06.14 Buxton

Structural alterations Ref No: C702

Office: 5901

Maximum BM occurs at 2nd load M=M2=29.356 kNm Corresponding shear force F = -Fr = 19.303 kN

Classification - Clause 3.5.2

Classify outstand element of compression flange:

Parameter (Table 11 Note b) $e=(275/py)^0.5=(275/275)^0.5$

=1

Outstand b=B/2=152.9/2=76.45 mm b'T=b/T=76.45/9.4=8.133Ratio

As $b/T \le 9e$ (9), outstand element of compression

flange is classified as Class 1 plastic.

Classify web of section:

d=D-2*(T+r)=157.6-2*(9.4+7.6)Depth between fillet radii

=123.6 mm

d't=d/t=123.6/6.5=19.015Ratio

Neutral axis is assumed to be at mid-depth of section.

As $d/t \le 80e$ (80), web is classified as Class 1 plastic.

Shear buckling

Since d/t < 70e no check for shear buckling is required.

Buckling resistance

Since the beam is subject to possible lateral torsional buckling, the buckling resistance moment Mb is first considered rather than the moment capacity Mc as a guide to selection.

Effective length - Clause 4.3.5.2

Beam is assumed to be laterally restraint at supports only. Length of beam between restraints LT=L=4.1 m In accordance with Clause 4.3.5.2 for beams with effective lateral restraints at intervals within their length subject to normal loading conditions Effective length Le=LT=4.1 m

Clause 4.3.6.6 and Table 18

Equivalent uniform moment factor

The member is not loaded between restraints.

Maximum moment on segment Me=29 kNm Far end BM betaM=24 kNm

Table 18 beta factor beta=betaM/Me=24/29=0.82759

Equivalent uniform moment factor mLT=TABLE 18 for beta=0.82759

=0.93103

Structural and Technical Systems 96, Green Lane

Date: 24.06.14 Buxton

Structural alterations Ref No: C702

> Office: 5901

Page: C10

Made by: SFW

Resistance to lateral-torsional buckling - Clause 4.3.6

Radius gyration about minor axis ry=SQR(Iy/A)=SQR(560/38.3)

=3.8238 cm

Slenderness of section lambda=Le/ry*100=4.1/3.8238*100

=107.22

Buckling parameter $u = (4*Sx^2*(1-Iy/Ix)/(A^2*((D-T))$

/10)^2))^0.25

 $= (4*248^2*(1-560/1750)/(38.3^2)$

*((157.6-9.4)/10)^2))^0.25

=0.84888

Torsional index $x=0.566*((D-T)/10)*(A/J)^0.5$

=0.566*((157.6-9.4)/10)*(38.3)

 $/10.5)^0.5$

=16.02

Ratio

ratio=lambda/x=107.22/16.02=6.693

Slenderness factor $v=1/((1+0.05*ratio^2)^0.25)$

 $=1/((1+0.05*6.693^2)^0.25)$

=0.74537

Ratio ßw betaw=1.0

Equivalent slenderness lamLT=u*v*lambda* (betaw) ^0.5

 $=0.84888*0.74537*107.22*(1)^0.5$

=67.843

Limiting slenderness $lamlo=0.4*((PI^2*E*10^3)/py)^0.5$

 $=0.4*((3.1416^2*205*10^3)$

 $/275)^0.5$

=34.31

Perry coefficient etaLT=0.007*(lamLT-lamlo)

=0.007*(67.843-34.31)

=0.23473

pe=PI^2*E*10^3/(lamLT^2) Elastic strength

 $=3.1416^2*205*10^3/(67.843^2)$

 $=439.59 \text{ N/mm}^2$

phiLT=(py+(etaLT+1)*pe)/2 Factor

= (275 + (0.23473 + 1) * 439.59) / 2

 $=408.89 \text{ N/mm}^2$

pey=pe*py=439.59*275=120887 Factor

pb=(pey) / (phiLT+((phiLT^2-pey)^0.5)) Bending strength

 $=(120887)/(408.89+(408.89^2)$

 $-120887)^0.5)$

 $=193.71 \text{ N/mm}^2$

Buckling resistance moment $Mb=Sx*pb/10^3=248*193.71/10^3$

=48.04 kNm

Equivalent uniform moment factor mLT=0.93103

Since M \leq Mb/mLT (29.356 kNm \leq 51.598 kNm), section OK for

lateral torsional buckling resistance.

Structural and Technical Systems Page: C11 96, Green Lane Made by: SFW

Date: 24.06.14 Buxton

Structural alterations Ref No: C702

Office: 5901

Check section for combined moment and shear

Maximum moment and co-existent shear

Shear area $Av=t*D=6.5*157.6=1024.4 mm^2$

Pv=0.6*py*Av/10^3=0.6*275*1024.4/10^3 Shear capacity

=169.03 kN

Design shear force Fv=F=19.303 kN

Elastic modulus Z=Ix/(D/20)=1750/(157.6/20)

=222.08 cm³

Since Fv < 0.6 Pv

Moment capacity for compact sec Mc=py*Sx/10^3=275*248/10^3

=68.2 kNm

Since M \leq Mc (29.356 kNm \leq 68.2 kNm), applied moment within moment capacity.

Maximum shear and coexistent moment

Shear capacity Pv = 169.03 kNDesign shear force Fv=Fve=22.635 kN

Coexistent moment M' = 0 kNm

Since Fv \leq Pv (22.635 kN \leq 169.03 kN), shear force within

shear capacity.

Check for deflection

Imposed load only considered in deflection calculation

UDL for deflection calculation wu=wi=0 kN/m

Central UDL defln DELw=5*wu*L^4/(384*E*Ix)*10^5

 $=5*0*4.1^4/(384*205*1750)*10^5$

=0 mm

a=x1=1.3 m

Constant for defln $const=L^3*10^5/(48*E*Ix)$

 $=4.1^3*10^5/(48*205*1750)$

=0.40024

Distance for defln

Point load 1 for defln calc W1=W1i=3.65 kN

Centl defln for W1

 $DELW1 = (3*a/L-4*(a/L)^3)*W1*const$

 $= (3*1.3/4.1-4*(1.3/4.1)^3)*3.65$

*0.40024

=1.2033 mm

Distance for defln

Point load 2 for defln calc

Centl defln for W2

a=L-x2=4.1-2.7=1.4 m

W2=W2i=5.9 kN

 $DELW2 = (3*a/L-4*(a/L)^3)*W2*const$

 $= (3*1.4/4.1-4*(1.4/4.1)^3)*5.9$

*0.40024

=2.0429 mm

Total central defin DEL=DELw+DELW1+DELW2=0+1.2033+2.0429

=3.2463 mm

From Table 8

Limiting deflection (brittle) DELlim=L*1000/360=4.1*1000/360

=11.389 mm

Since DEL \leq DELlim (3.2463 mm \leq 11.389 mm) OK for deflection.

Structural and Technical Systems 96, Green Lane Buxton Structural alterations	Page: Made by: Date: Ref No:	SFW 24.06.14
	Office:	5901

SECTION		152 x 152 x 30 UKC Grad	de S 275
		Shear force	22.635 kN
DESIGN		Shear capacity	169.03 kN
SUMMARY		Max. applied moment	29.356 kNm
		Moment capacity	68.2 kNm
		Buckling resistance	48.04 kNm
		Moment factor (mLT)	0.93103
		Resistance (Mb/mLT)	51.598 kNm
		Deflection	3.2463 mm
		Limiting deflection	11.389 mm
	Г	DL shear at A	9.6655 kN
	Unfactored	LL shear at A	4.5073 kN
	end shears	DL shear at B	10.405 kN
	L	LL shear at B	5.0427 kN

No436

Structural and Technical Systems 96, Green Lane

Structural alterations

Buxton

Page: C13 Made by: SFW

Date: 24.06.14 Ref No: C702

5901 Office:

Location: Brown Edge

Timber beam to BS5268-2:2002

Simply supported beam subjected to vertical loads.

All loads are positive downwards, reactions are positive upwards, sagging moments are positive.

Distances are measured from left hand support

Uniformly distributed load 1 of 1 Dist. from left support to start Lau(1)=0 m

Distance from left support to end Lbu(1)=3.8 mDead load (unfactored) Gku(1)=2.3 kN/m

Imposed load (unfactored)

Qku(1) = 1.7 kN/m

BMs at 20th points, from left to right (sagging is positive)

0	1.3718	2.5992	3.6822	4.6208	5.415
	6.0648	6.5702	6.9312	7.1478	7.22
	7.1478	6.9312	6.5702	6.0648	5.415
	4.6208	3.6822	2.5992	1.3718	0

Maximum span bending moment 7.22 kNm

End shears

Shear force at left hand end	7.6 kN
Shear force at right hand end	7.6 kN
Design shear force	Fve $'=7.6$

Unfactored dead shear at LHE 4.37 kN Unfactored imposed shear at LHE 3.23 kN Unfactored dead shear at RHE 4.37 kN Unfactored imposed shear at RHE 3.23 kN

Section design parameters

Structural and Technical Systems Page: C14
96, Green Lane Made by: SFW
Buxton Date: 24.06.14

Structural alterations Ref No: C702

Office: 5901

Design bending moment M=7.22 kNm Design shear force Fve=7.6 kN Design axial load (+ve compress) Fa=0 kN Depth of section d=250 mm Width of section b=100 mm Eff length for bending about xx Lex=3800 mm Eff length for bending about yy Ley=0 mm Length of bearing lb=75 mm

From BS5268-2 Table 18, bearing is < 75 mm from joist end.

Bearing Modification factor K4=1.0

Strength class C24 to Table 8

Timber service class adopted tmclass=1

Timber service class modification factor K2=1 as Table 16.

Modification factors:

Bending parallel to grain K2ben=1.0
Tension parallel to grain K2ten=1.0
Compression parallel to grain K2com=1.0
Compression L to grain K2per=1.0
Shear parallel to grain K2shr=1.0
Mean & min modulus of elasticity K2mod=1.0

Section properties

Inertia about xx axis $Ix=b*d^3/12=100*250^3/12$ =130.21E6 mm⁴

Inertia about yy axis $Iy=d*b^3/12=250*100^3/12$

 $=20.833E6 \text{ mm}^4$

Area of cross section $A=b*d=100*250=25000 \text{ mm}^2$

Radius of gyration about xx axis ix=SQR(Ix/A)=SQR(130.21E6/25000)

=72.169 mm

Radius of gyration about yy axis iy=SQR(Iy/A)=SQR(20.833E6/25000)

=28.868 mm

Slenderness

xx axis controls slenderness at lambda=lambdx=52.654

Grade stresses

Compression parallel to grain cparg=7.9 N/mm²
Bending parallel to grain bparg=7.5 N/mm²
Shear parallel to grain sparg=0.71 N/mm²
Compression perp to grain cperd=2.4 N/mm²
Mean modulus of elasticity Emean=10800 N/mm²
Minimum modulus of elasticity Emin=7200 N/mm²

Structural and Technical Systems Page: C15 96, Green Lane Made by: SFW

Date: 24.06.14 Buxton Structural alterations

Ref No: C702

Office: 5901

Modification factors

Duration of loading K3=1.25

Depth factor $K7 = (300/d)^0.11 = (300/250)^0.11$

=1.0203

Member is not in a load-sharing system as defined by Clause 2.9.

Modulus of elasticity E=Emin*K2mod=7200*1=7200 N/mm²

Load-sharing modification factor K8=1.0 No notches exist at the support K5=1.0

Permissible stresses

Permissible bending stress sigmad=K2ben*K3*K7*K8*bparg

=1*1.25*1.0203*1*7.5

 $=9.5649 \text{ N/mm}^2$

Shear parallel to grain torad=K2shr*K3*K5*K8*sparg

> =1*1.25*1*1*0.71 $=0.8875 \text{ N/mm}^2$

Compress perp to grain (no wane) sigbad=K2per*K3*K4*K8*cperd

=1*1.25*1*1*2.4

 $=3 \text{ N/mm}^2$

Bending

Applied bending stress

sigma=M*1E6*(d/2)/Ix

=7.22*1E6*(250/2)/130.21E6

 $=6.9312 \text{ N/mm}^2$

Since sigma \leq sigmad (6.9312 N/mm² \leq 9.5649 N/mm²) applied bending stress within permissible.

Check for deflection (including shear defln as reqd by Clause 2.10.7)

Deflection based on $E=7200 \text{ N/mm}^2$

DL deflection without shear dld=dld=6.6609 mm Imposed deflection without shear ild=ild=4.9232 mm

Total DL & imposed deflection 11.584 mm

Modulus of rigidity $G=E/16=7200/16=450 \text{ N/mm}^2$

Shape factor for rect section KF = 1.2

Shear area for beam $Ay=d*b/KF=250*100/1.2=20833 \text{ mm}^2$

Total DL & imposed 15.2 kN

If total DL & imposed load applied as a UDL, additional deflection

 $dsu=WT'*L*10^6/(8*Ay*G)$ due to shear

=15.2*3.8*10^6/(8*20833*450)

=0.77013 mm

Shear deflection dels=dsu*M/(WT'*L/8)

=0.77013*7.22/(15.2*3.8/8)

=0.77013 mm

Limiting deflection DELlim=0.003*L*10^3=0.003*3.8*10^3

=11.4 mm

Deflection inclusive of shear DEL=dld+ild+dels

=6.6609+4.9232+0.77013

=12.354 mm

Since DEL > DELlim (12.354 mm > 11.4 mm), deflection exceeds limiting value.

Structural and Technical Systems 96, Green Lane

Buxton Structural alterations Page: C16 Made by: SFW

Date: 24.06.14 Ref No: C702

Office: 5901

Location: Brown Edge

Timber beam to BS5268-2:2002

Simply supported beam subjected to vertical loads.

All loads are positive downwards, reactions are positive upwards, sagging moments are positive.

Distances are measured from left hand support

Uniformly distributed load 1 of 1 Dist. from left support to start Lau(1)=0 m Distance from left support to end Lbu(1)=3.8 m Dead load (unfactored) Gku(1)=1.4 kN/m

Imposed load (unfactored)

Qku(1) = 1.0 kN/m

BMs at 20th points, from left to right (sagging is positive)

0	0.82308	1.5595	2.2093	2.7725	3.249
	3.6389	3.9421	4.1587	4.2887	4.332
	4.2887	4.1587	3.9421	3.6389	3.249
	2.7725	2.2093	1.5595	0.82308	0

Maximum span bending moment

4.332 kNm

End shears

Shear force a	at left hand end	4.56 kN
Shear force a	at right hand end	4.56 kN
Design shear	force	Fve'= 4.56

Unfactored dead shear at LHE 2.66 kN
Unfactored imposed shear at LHE 1.9 kN
Unfactored dead shear at RHE 2.66 kN
Unfactored imposed shear at RHE 1.9 kN

Section design parameters

Structural and Technical Systems Page: C17
96, Green Lane Made by: SFW
Buxton Date: 24.06.14

Structural alterations Ref No: C702

Office: 5901

Design bending moment M=4.332 kNm Design shear force Fve=4.56 kN Design axial load (+ve compress) Fa=0 kN Depth of section d=225 mm Width of section b=75 mm Eff length for bending about xx Lex=3800 mm Eff length for bending about yy Ley=0 mm Length of bearing lb=75 mm

From BS5268-2 Table 18, bearing is < 75 mm from joist end.

Bearing Modification factor K4=1.0

Strength class C24 to Table 8

Timber service class adopted tmclass=1

Timber service class modification factor K2=1 as Table 16.

Modification factors:

Bending parallel to grain K2ben=1.0
Tension parallel to grain K2ten=1.0
Compression parallel to grain K2com=1.0
Compression L to grain K2per=1.0
Shear parallel to grain K2shr=1.0
Mean & min modulus of elasticity K2mod=1.0

Section properties

Slenderness

Grade stresses

Compression parallel to grain cparg=7.9 N/mm²
Bending parallel to grain bparg=7.5 N/mm²
Shear parallel to grain sparg=0.71 N/mm²
Compression perp to grain cperd=2.4 N/mm²
Mean modulus of elasticity Emean=10800 N/mm²
Minimum modulus of elasticity Emin=7200 N/mm²

Structural and Technical Systems Page: C18 96, Green Lane Made by: SFW

Date: 24.06.14 Buxton Structural alterations

Ref No: C702

Office: 5901

Modification factors

Duration of loading K3=1.25

Depth factor $K7 = (300/d)^0.11 = (300/225)^0.11$

=1.0322

Member is not in a load-sharing system as defined by Clause 2.9.

Modulus of elasticity

E=Emin*K2mod=7200*1=7200 N/mm²

Load-sharing modification factor K8=1.0 No notches exist at the support K5=1.0

Permissible stresses

Permissible bending stress sigmad=K2ben*K3*K7*K8*bparg

=1*1.25*1.0322*1*7.5

 $=9.6764 \text{ N/mm}^2$

Shear parallel to grain torad=K2shr*K3*K5*K8*sparg

> =1*1.25*1*1*0.71 $=0.8875 \text{ N/mm}^2$

Compress perp to grain (no wane) sigbad=K2per*K3*K4*K8*cperd

=1*1.25*1*1*2.4

 $=3 \text{ N/mm}^2$

Bending

Applied bending stress

sigma=M*1E6*(d/2)/Ix

=4.332*1E6*(225/2)/71.191E6

 $=6.8456 \text{ N/mm}^2$

Since sigma \leq sigmad (6.8456 N/mm² \leq 9.6764 N/mm²) applied bending stress within permissible.

Check for deflection (including shear defln as reqd by Clause 2.10.7)

Deflection based on $E=7200 \text{ N/mm}^2$

DL deflection without shear dld=dld=7.4155 mm Imposed deflection without shear ild=ild=5.2968 mm

Total DL & imposed deflection 12.712 mm

Modulus of rigidity

 $G=E/16=7200/16=450 \text{ N/mm}^2$

Shape factor for rect section KF = 1.2

Shear area for beam

Total DL & imposed

 $Ay=d*b/KF=225*75/1.2=14062 mm^2$

9.12 kN

If total DL & imposed load applied as a UDL, additional deflection

 $dsu=WT'*L*10^6/(8*Ay*G)$ due to shear

=9.12*3.8*10⁶/(8*14062*450)

=0.68456 mm

Shear deflection dels=dsu*M/(WT'*L/8)

=0.68456*4.332/(9.12*3.8/8)

=0.68456 mm

Limiting deflection

DELlim=0.003*L*10^3=0.003*3.8*10^3

=11.4 mm

Deflection inclusive of shear

DEL=dld+ild+dels =7.4155+5.2968+0.68456

=13.397 mm

Since DEL > DELlim (13.397 mm > 11.4 mm), deflection exceeds limiting value.

Structural and Technical Systems 96, Green Lane

Buxton Structural alterations

Page: C19 Made by: SFW

Date: 24.06.14 Ref No: C702

Office: 5901

Location: Brown Edge

Timber beam to BS5268-2:2002

Simply supported beam subjected to vertical loads.

All loads are positive downwards, reactions are positive upwards, sagging moments are positive.

Distances are measured from left hand support

Uniformly distributed load 1 of 1 Dist. from left support to start Lau(1)=0 m

Distance from left support to end Lbu(1)=2.7 mDead load (unfactored) Gku(1) = 1.15 kN/m

Imposed load (unfactored)

Qku(1) = 3.45 kN/m

BMs at 20th points, from left to right (sagging is positive)

0	0.79643	1.509	2.1378	2.6827	3.1438
	3.5211	3.8145	4.0241	4.1498	4.1918
	4.1498	4.0241	3.8145	3.5211	3.1438
	2.6827	2.1378	1.509	0.79643	0

Maximum span bending moment 4.1918 kNm

End shears

Shear force at left hand end	6.21 kN
Shear force at right hand end	6.21 kN
Design shear force	Fve'=6.21
Unfactored dead shear at LHE	1.5525 kN

Unfactored dead shear at LHE Unfactored imposed shear at LHE 4.6575 kN Unfactored dead shear at RHE 1.5525 kN Unfactored imposed shear at RHE 4.6575 kN

Section design parameters

Structural and Technical Systems

96, Green Lane

Buxton

Page: C20

Made by: SFW

Date: 24.06.14

Structural alterations Ref No: C702

1b=75 mm

Office: 5901

Design bending moment M=4.1918 kNm Design shear force Fve=6.21 kN Design axial load (+ve compress) Fa=0 kN Depth of section d=225 mm Width of section b=75 mm Eff length for bending about xx Lex=2700 mm Eff length for bending about yy Ley=0 mm

From BS5268-2 Table 18, bearing is < 75 mm from joist end.

Bearing Modification factor K4=1.0

Strength class C24 to Table 8

Timber service class adopted tmclass=1

Timber service class modification factor K2=1 as Table 16.

Modification factors:

Length of bearing

Bending parallel to grain K2ben=1.0
Tension parallel to grain K2ten=1.0
Compression parallel to grain K2com=1.0
Compression to grain K2per=1.0
Shear parallel to grain K2shr=1.0
Mean & min modulus of elasticity K2mod=1.0

Section properties

Slenderness

Grade stresses

Compression parallel to grain cparg=7.9 N/mm²
Bending parallel to grain bparg=7.5 N/mm²
Shear parallel to grain sparg=0.71 N/mm²
Compression perp to grain cperd=2.4 N/mm²
Mean modulus of elasticity Emean=10800 N/mm²
Minimum modulus of elasticity Emin=7200 N/mm²

Structural and Technical Systems Page: C21 96, Green Lane Made by: SFW

Buxton Date: 24.06.14

Structural alterations Ref No: C702

Office: 5901

Modification factors

Duration of loading K3=1.00

Depth factor $K7=(300/d)^0.11=(300/225)^0.11$

=1.0322

Member is not in a load-sharing system as defined by Clause 2.9.

Modulus of elasticity E=Emin*K2mod=7200*1=7200 N/mm²

Load-sharing modification factor K8=1.0 No notches exist at the support K5=1.0

Permissible stresses

Permissible bending stress sigmad=K2ben*K3*K7*K8*bparg

=1*1*1.0322*1*7.5

 $=7.7411 \text{ N/mm}^2$

Shear parallel to grain torad=K2shr*K3*K5*K8*sparg

=1*1*1*1*0.71=0.71 N/mm²

Compress perp to grain (no wane) sigbad=K2per*K3*K4*K8*cperd

=1*1*1*1*2.4=2.4 N/mm²

Bending

Applied bending stress

sigma=M*1E6*(d/2)/Ix

=4.1918*1E6*(225/2)/71.191E6

 $=6.624 \text{ N/mm}^2$

Since sigma \leq sigmad (6.624 N/mm² \leq 7.7411 N/mm²) applied bending stress within permissible.

Check for deflection (including shear defln as reqd by Clause 2.10.7)

Deflection based on E=7200 N/mm²

DL deflection without shear dld=dld=1.5525 mm Imposed deflection without shear ild=ild=4.6575 mm

Total DL & imposed deflection 6.21 mm

Modulus of rigidity $G=E/16=7200/16=450 \text{ N/mm}^2$

Shape factor for rect section KF=1.2

Shear area for beam $Ay=d*b/KF=225*75/1.2=14062 mm^2$

Total DL & imposed 12.42 kN

If total DL & imposed load applied as a UDL, additional deflection

due to shear $dsu=WT'*L*10^6/(8*Ay*G)$

=12.42*2.7*10^6/(8*14062*450)

=0.6624 mm

Shear deflection dels=dsu*M/(WT'*L/8)

=0.6624*4.1918/(12.42*2.7/8)

=0.6624 mm

Limiting deflection DELlim=0.003*L*10^3=0.003*2.7*10^3

=8.1 mm

Deflection inclusive of shear

DEL=dld+ild+dels=1.5525+4.6575+0.6624

=6.8724 mm

Since DEL \leq DELlim (6.8724 mm \leq 8.1 mm), OK for deflection.

Structural and Technical Systems Page: C22 96, Green Lane Made by: SFW Buxton Date: 24.06.14 Structural alterations Ref No: C702

Shear and bearing

Shear stress (no notches)

tora=3*Fve*1000/(2*b*d)

=3*6.21*1000/(2*75*225)

Office: 5901

 $=0.552 \text{ N/mm}^2$

Since tora \leq torad (0.552 N/mm² \leq 0.71 N/mm²) shear stress

does not exceed permissible therefore OK.

Bearing stress on wall plate

sigba=Fve*1000/(lb*b)

=6.21*1000/(75*75)

 $=1.104 \text{ N/mm}^2$

Since sigba \leq sigbad (1.104 N/mm² \leq 2.4 N/mm²) bearing stress does not exceed permissible therefore OK.

Member: 225 mm x 75 mm

Strength class C24 to Table 8

Moisture service class 1

Bending stress 6.624 N/mm^2 Permissible bending 7.7411 N/mm² Deflection 6.8724 mm

DESIGN SUMMARY

Limiting deflection 8.1 mm Shear stress 0.552 N/mm² Permissible shear 0.71 N/mm²
Bearing stress 1.104 N/mm²
Permissible bearing 2.4 N/mm² 1.104 N/mm^2

No254

Structural and Technical Systems 96, Green Lane Buxton

Structural alterations

Page: C23 Made by: SFW

24.06.14 Date: Ref No: C702

Office: 5901

Location: Brown Edge

Rectangular timber member

subject to axial load and

bending about z-z axis

Calculations in accordance with BS5268-2:2002.

Design BM about zz (positive) Mz=1.5 kNm Design shear force in y direction $V=0\ kN$ Design axial load (+ve compress) F=15.5 kN Member is in compression. Eff length for bending about zz Depth of section Width of section

Eff length for bending about yy

Strength class C24 to Table 8

Lez'=1.800 md=150 mm b=150 mm

Lez=Lez'*1000=1.8*1000=1800 mm

Ley'=1.8 m

Ley=Ley'*1000=1.8*1000=1800 mm

Section properties

Largest section dimension Inertia about zz axis Inertia about yy axis Area of cross section

h=b=150 mm

Iz=b*d^3/12=150*150^3/12

 $=42.188E6 \text{ mm}^4$

 $Iy=d*b^3/12=150*150^3/12$

 $=42.188E6 \text{ mm}^4$

A=b*d=150*150=22500 mm²

Radius of gyration about zz axis

iz=SQR(Iz/A)=SQR(42.188E6/22500)=43.301 mm

Radius of gyration about yy axis

iy=SQR(Iy/A)=SQR(42.188E6/22500)=43.301 mm

Slenderness

Slenderness ratio about zz axis Slenderness ratio about yy axis

lambdz=Lez/iz=1800/43.301 =41.569lambdy=Ley/iy=1800/43.301

=41.569lambda=lambdy=41.569

yy axis controls SR

Structural and Technical Systems Page: C24 96, Green Lane Made by: SFW Date: 24.06.14 Buxton

Structural alterations Ref No: C702

> Office: 5901

Grade stresses

Compression parallel to grain cparg=7.9 N/mm² $bparg=7.5 N/mm^2$ Bending parallel to grain sparg=0.71 N/mm² Shear parallel to grain Mean modulus of elasticity $Emean=10800 N/mm^2$ Minimum modulus of elasticity Emin=7200 N/mm²

Modification factors

Timber service class adopted tmclass=3

Timber stress grades and moduli adjusted as table 16.

Modification factors:

Bending parallel to grain K2ben=0.8Tension parallel to grain K2ten=0.8Compression parallel to grain K2com=0.6Compression \perp to grain K2per=0.6Shear parallel to grain K2shr=0.9Mean & min modulus of elasticity K2mod=0.8 Duration of loading K3=1.00Depth factor

 $K7 = (300/d)^0.11 = (300/150)^0.11$ =1.0792

Member is not in a load-sharing system as defined by Clause 2.9. Modulus of elasticity $E=Emin*K2mod=7200*0.8=5760 N/mm^2$ Load-sharing modification factor K8=1.0

For compression members with slenderness ratios equal to or greater than 5, the permissible stress should be calculated as the product of the grade compression parallel to the grain stress, modified as appropriate for size, moisture content, duration of load and load sharing, and the modification factor K12 given by table, or calculated as follows using the equation in annex B. The value of modulus of elasticity should be the minimum modulus of elasticity. The compression parallel to the grain stress required for entry to annex B should be the grade stress modified only for moisture content and duration of load.

Compr. parallel to grain stress sigc=K2com*K3*cparg=0.6*1*7.9

 $=4.74 \text{ N/mm}^2$

Modulus of elasticity $E=Emin*K2mod=7200*0.8=5760 N/mm^2$

Factor for annex B $C=PI^2*E/(1.5*lambda^2*sigc)$

 $=3.1416^2*5760/(1.5*41.569^2*4.74)$

=4.6271

eta=0.005*lambda=0.005*41.569 Eccentricity factor

=0.20785

Modification factor $K12=(0.5+(1+eta)*C/2)-((0.5+(1+eta)*C/2)^2-C)^0.5$

= (0.5 + (1+0.20785) *4.6271/2) - ((0.5 + (1+0.20785))

*4.6271/2)^2-4.6271)^0.5

=0.79921

Structural and Technical Systems Page: C25 Made by: SFW 96, Green Lane Date: 24.06.14 Buxton

Structural alterations Ref No: C702

Office: 5901

Permissible stresses

Permissible compression stress sigcad=K2com*K3*K8*K12*cparg

=0.6*1*1*0.79921*7.9

 $=3.7882 \text{ N/mm}^2$

Permissible bending stress sigmad=K2ben*K3*K7*K8*bparg

=0.8*1*1.0792*1*7.5

 $=6.4754 \text{ N/mm}^2$

Axial compression

The limitation on bow in most stress grading rules are inadequate for the selection of material for columns. Particular attention should therefore be paid to the straightness of columns, e.g. by limiting bow to approximately 1/300 of the length.

Applied compression stress

sigca=F*1000/A=15.5*1000/22500 $=0.68889 \text{ N/mm}^2$

Applied bending stress sigma=Mz*1E6*(d/2)/Iz

=1.5*1E6* (150/2) /42.188E6

 $=2.6667 \text{ N/mm}^2$

Euler critical stress

sige=PI^2*E/lambda^2

=3.1416^2*5760/41.569^2

 $=32.899 \text{ N/mm}^2$

Bending stress modification fact bsmf=1-1.5*sigca*K12/sige

=1-1.5*0.68889*0.79921/32.899

=0.9749

Interaction factor

factor=sigma/(sigmad*bsmf)+sigca

/sigcad

=2.6667/(6.4754*0.9749)

+0.68889/3.7882

=0.60427

Interaction factor less than or equal to unity therefore OK.

DESIGN SUMMARY

Bending

Depth of section 150 mm Width of section 150 mm Strength class C24 to Table 8

Timber moisture class 3

Applied comprn stress 0.68889 N/mm² Permiss comprn stress 3.7882 N/mm² Applied bending stress 2.6667 N/mm² Permiss bending stress 6.4754 N/mm²

Interaction factor 0.60427

No250

